Evaluating the Effect of Block Aggregation Approach on Ultimate Pit Limit Characteristics Using the Linear Programming Model

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 89

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ANM-12-33_003

تاریخ نمایه سازی: 20 آذر 1403

چکیده مقاله:

An open-pit mine production planning begins with determining the ultimate pit limit of an open-pit mine. The ultimate pit limit solver selects blocks whose total economic value is maximum while meeting the slope constraints. In other words, a group of blocks that maximize a selected parameter, such as profit, metal content, or net present value, is considered in determining the ultimate pit limit. Also, the ultimate pit limit is designed to select the waste dump location, surface facilities, extractable reserves, and the amount of waste removal. The production planning problem in large-scale open-pit mines is referred to as an NP-hard problem because it cannot be solved in a reasonable computational time. To solve this, various methods, including aggregation methods, have been proposed to reduce the size of the issue. In this paper, to evaluate the efficiency of the block aggregation technique based on the pit values and computational times, at first, the heuristic Tabesh-AskariNasab aggregation algorithm was applied to the block models with ۲۴۰۰ and ۱۱۴۰۰ blocks. Then the ultimate pit limit based on the original block model and reconstructed block models were determined using the linear programming model. Comparing the results in both block models indicates that the block aggregation approach considerably decreased computational time while generating near-optimal pit values. These results are more critical in large-scale production planning problems, exactly in open pit mine scheduling. Furthermore, the slope of pit walls was decreased by increasing the size of clusters, and the stripping ratio increased in both block models.

کلیدواژه ها:

نویسندگان

Nooshin Azadi

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Hossein Mirzaei Nasirabad

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Amin Mousavi

Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Mwangi, A., et al.,(۲۰۲۰). Ultimate Pit Limit Optimization Methods in ...
  • Osanloo, M., J. Gholamnejad, and B. Karimi,(۲۰۰۸). Long-term open pit ...
  • Lerchs, H.,(۱۹۶۵). Optimum design of open-pit mines. Trans CIM. ۶۸: ...
  • Frimpong, S. and P.K. Achireko,(۲۰۰۷). The MCS/MFNN algorithm for open ...
  • Askari-Nasab, H. and K. Awuah-Offei,(۲۰۰۹). Open pit optimisation using discounted ...
  • Sayadi, A.R., N. Fathianpour, and A.A. Mousavi,(۲۰۱۱). Open pit optimization ...
  • A New Algorithm for Determining Ultimate Pit Limits Based on Network Optimization [مقاله ژورنالی]
  • Esmaeil, R., et al.,( ۲۰۱۸). Optimized algorithm in mine production ...
  • Gershon, M.E., (۱۹۸۳). Optimal mine production scheduling: evaluation of large ...
  • Ramazan, S., (۲۰۰۱). Open pit mine scheduling based on fundamental ...
  • Ramazan, S.,(۲۰۰۷). The new Fundamental Tree Algorithm for production scheduling ...
  • Ramazan, S., K. Dagdelen, and T. Johnson,(۲۰۰۵). Fundamental tree algorithm ...
  • Askari-Nasab, H., K. Awuah-Offei, and H. Eivazy,(۲۰۱۰). Large-scale open pit ...
  • Tabesh, M. and H. Askari-Nasab, (۲۰۱۱). Two-stage clustering algorithm for ...
  • Ren, H. and E. Topal,(۲۰۱۴). Using Clustering Methods for Open ...
  • Jélvez, E., et al.,(۲۰۱۶). Aggregation heuristic for the open-pit block ...
  • Mai, N.L., E. Topalt, and O. Ertent,(۲۰۱۸). A new open-pit ...
  • Lotfian, R., J. Gholamnejad, and Y. Mirzaeian Lardkeyvan, (۲۰۲۰). Effective ...
  • Tabesh, M., (۲۰۱۵). Aggregation and Mathematical Programming for Long-Term Open ...
  • Hochbaum, D.S. and A. Chen, (۲۰۰۰). Performance analysis and best ...
  • Espinoza, D., et al.,(۲۰۱۳). MineLib: a library of open pit ...
  • Marcos Dósea a, L.S.a., Maria A. Silva b, Sócrates C.H. ...
  • نمایش کامل مراجع