Estimating Penetration Rate of Excavation Machine Using Geotechnical Parameters and Neural Networks in Tabriz Metro

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 103

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ANM-13-37_001

تاریخ نمایه سازی: 20 آذر 1403

چکیده مقاله:

In this study, the penetration rate of the excavation machine in Tabriz Metro Line ۲ using geotechnical parameters and neural networks is estimated. For this purpose, through comprehensive analysis, including borehole drilling, field and laboratory tests, and consideration of similar projects, the geotechnical parameters for soil and rock layers have been determined. Preprocessing data techniques, such as normalization, have been applied to address challenges such as noise and bias in raw data. Also, neural networks with varying architectures were evaluated using mean square error and correlation coefficient as evaluation metrics. The architecture (۱-۱۲-۸) of this research demonstrates superior performance with a mean square error of ۱.۶۳۰ and a correlation coefficient of ۰.۹۳۲. This shows a strong relationship between predicted and actual penetration rate values. The findings of this research highlight the effectiveness of neural networks in estimating the penetration rate. Accurate estimations of the non-linear penetration rate were achieved by employing a single-layer neural network with multiple neurons using appropriate transfer functions. Overall, this research contributes to the understanding of geotechnical considerations for urban train routes and demonstrates the accuracy of neural networks for penetration rate estimation. These insights have implications for the design and engineering of similar projects.

نویسندگان

Samaneh Khodaee Ashestani

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Hamid Chakeri

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Mohammad Darbor

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Erfan Khoshzaher

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

Seyyed Shahab Eddin Bazargan

Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Benato, A. and Oreste, P. (۲۰۱۵): Prediction of penetration per ...
  • Sindhwani, A., Murthy, V. M. S. R., Raphique, M. and ...
  • Farmer, I., W. and Glossop, N. H. (۱۹۸۰): Mechanics of ...
  • Sanio, H. P. (۱۹۸۵): Prediction of the performance of disc ...
  • Yagiz, S. (۲۰۰۲): Development of rock fracture and brittleness indices ...
  • Ghasemi, E., Yagiz, S. and Ataei, M. (۲۰۱۴): Predicting penetration ...
  • Yagiz, S. and Karahan, H. (۲۰۱۱): Prediction of hard rock ...
  • Benardos, A. G. and Kaliampakos, D. C. (۲۰۰۴): Modelling TBM ...
  • Koopialipoor, M., Fahimifar, A., Ghaleini, E. N., Momenzadeh, M. and ...
  • Huang, Z., Argyroudis, S. A., Pitilakis, K., Zhang, D. and ...
  • Ding, Z., Zhao, L. S., Zhou, W. H. and Bezuijen, ...
  • Umair, M., Kim, D. and Choi, M. (۲۰۲۰): Impact of ...
  • Yu, H., Qin, C., Tao, J., Liu, C. and Liu, ...
  • Yu, H., Tao, J., Huang, S., Qin, C., Xiao, D. ...
  • Xia, P., Huang, Y., Li, P., Liu, C. and Shi, ...
  • Xiao, D., Qin, C., Yu, H., Huang, Y., Liu, C. ...
  • Qin, C., Xiao, D., Tao, J., Yu, H., Jin, Y., ...
  • Armaghani, D. J., Koopialipoor, M., Marto, A. and Yagiz, S. ...
  • Ahmadi, M. A., Ebadi, M., Shokrollahi, A. and Majidi, S. ...
  • Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, ...
  • Armaghani, D. J., Yagiz, S., Mohamad, E. T. and Zhou, ...
  • Farrokh, E., Rostami, J. and Laughton, C. (۲۰۱۲): Study of ...
  • Wang, X., Wu, J., Yin, X., Liu, Q., Huang, X., ...
  • Hassan, S. A., Shitote, S. M. and Kiplangat, D. C. ...
  • Mahdevari, S. and Torabi, S. R. (۲۰۱۲): Prediction of tunnel ...
  • Mahdevari, S., Torabi, S. R. and Monjezi, M. (۲۰۱۲): Application ...
  • Zhou, J., Qiu, Y., Armaghani, D. J., Zhang, W., Li, ...
  • Koopialipoor, M., Nikouei, S. S., Marto, A., Fahimifar, A., Jahed ...
  • Hecht-Nielsen, R. (۱۹۸۷): Kolmogorov’s mapping neural network existence theorem. In ...
  • Ripley, B. D. (۱۹۹۳): Statistical aspects of neural networks. Natworks ...
  • Paola J. (۱۹۹۴): Neural network classification of multispectral imagery. Master ...
  • Wang, C. (۱۹۹۴): A theory of generalization in learning machines ...
  • Masters T. (۱۹۹۳): Practical neural network recipes in C++: Morgan ...
  • Kaastra, I. and Boyd, M. (۱۹۹۶): Designing a neural network ...
  • Kanellopoulos, I. and Wilkinson, G. G. (۱۹۹۷): Strategies and best ...
  • Demuth, H. B. and Beale, M. H. (۲۰۰۴): Neural network toolbox ...
  • Pajohesh Omran Rahvar, (۲۰۰۹): Geotechnical Reports of Tabriz Metro Line ...
  • نمایش کامل مراجع