Estimating Penetration Rate of Excavation Machine Using Geotechnical Parameters and Neural Networks in Tabriz Metro
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 103
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ANM-13-37_001
تاریخ نمایه سازی: 20 آذر 1403
چکیده مقاله:
In this study, the penetration rate of the excavation machine in Tabriz Metro Line ۲ using geotechnical parameters and neural networks is estimated. For this purpose, through comprehensive analysis, including borehole drilling, field and laboratory tests, and consideration of similar projects, the geotechnical parameters for soil and rock layers have been determined. Preprocessing data techniques, such as normalization, have been applied to address challenges such as noise and bias in raw data. Also, neural networks with varying architectures were evaluated using mean square error and correlation coefficient as evaluation metrics. The architecture (۱-۱۲-۸) of this research demonstrates superior performance with a mean square error of ۱.۶۳۰ and a correlation coefficient of ۰.۹۳۲. This shows a strong relationship between predicted and actual penetration rate values. The findings of this research highlight the effectiveness of neural networks in estimating the penetration rate. Accurate estimations of the non-linear penetration rate were achieved by employing a single-layer neural network with multiple neurons using appropriate transfer functions. Overall, this research contributes to the understanding of geotechnical considerations for urban train routes and demonstrates the accuracy of neural networks for penetration rate estimation. These insights have implications for the design and engineering of similar projects.
کلیدواژه ها:
نویسندگان
Samaneh Khodaee Ashestani
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Hamid Chakeri
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Mohammad Darbor
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Erfan Khoshzaher
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
Seyyed Shahab Eddin Bazargan
Dept. of Mining Engineering, Sahand University of Technology, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :