A combination model of multiple regression and rock engineering systems (MR-RES) to identify main parameters' effect value on tunnel face advance

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 94

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ANM-13-37_005

تاریخ نمایه سازی: 20 آذر 1403

چکیده مقاله:

To accurately predict the advance of a tunnel excavated by the drilling and blasting method, various parameters related to the rock and the operational conditions of the project should be taken into account. In this paper, a comprehensive model was developed to investigate the effects of different parameters on the advancement of such a tunnel. To achieve this goal, we conducted a systematic study at the tailrace tunnel of the Azad Dam in Iran. Rock properties, including the rock mass rating (RMR) and tunneling quality index (Q), as well as operational conditions such as blasting specific charge (q) and tunnel face area (A), were measured to establish comprehensive datasets for prediction. A total of ۸۶ tunneling data points were collected and considered in this study. A novel model was developed, combining multiple regression (MR) and rock engineering systems (RES), to estimate tunnel face advance. The RES coding method was improved by incorporating a multiple regression model. The proposed coding method creatively assesses the influencing parameters, providing the advantage of accommodating uncertainties in the RES analysis. It achieves this by modeling the relationship between the explanatory (independent) variables and response (dependent) variables, thereby quantifying the interaction matrix. To evaluate the accuracy of the proposed models for both MR and RES datasets, we used the coefficient of determination (R۲), a significant statistical criterion. A comparison of the values predicted by the models demonstrated that RES offers a more suitable performance than MLR for predicting tunnel advance. Sensitivity analysis of the MR-RES models reveals that the effective parameters on tunnel advance, in descending order of influence, are RMR (۳۵.۶۲%), Q (۲۸.۶%), q (۲۰.۳۵%), and A (۱۵.۴۲%). This hybrid method can be developed in other fields of engineering without human judgment and considering the statistical background of the data.

کلیدواژه ها:

Tunnel Face Advance (TFC) ، Rock Engineering Systems (RES) ، Multiple Regression (MR) ، Drilling and blasting method

نویسندگان

Majid Noorian-Bidgoli

Dept. of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

Sahand Golmohammadi

Dept. of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alber, M., ۲۰۰۰. Advance rates of hard rock TBMs and ...
  • Andriani, G. F., Parise, M., ۲۰۱۷. Applying rock mass classifications ...
  • Armaghani, D. J., Koopialipoor, M., Marto, A., Yagiz, S., ۲۰۱۹. ...
  • Bruland, A., ۱۹۹۹. Hard rock tunnel boring advance rate and ...
  • Delisio, A., Zhao, J., Einstein, H. H., ۲۰۱۳. Analysis and ...
  • Faramarzi, F., Mansouri, H., Farsangi, M. E., ۲۰۱۳. A rock ...
  • Farrokh, E., ۲۰۲۰. A study of various models used in ...
  • Frough, O., Torabi, S. R., ۲۰۱۳. An application of rock ...
  • Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L., ...
  • Girmscheid, G., Schexnayder, C., ۲۰۰۲. Drill and blast tunneling practices. ...
  • Gokceoglu, C., ۲۰۲۲. Assessment of rate of penetration of a ...
  • Gong, Q., Zhao, J., ۲۰۰۹. Development of a rock mass ...
  • Grima, M. A., Bruines, P. A., Verhoef, P. N. W., ...
  • Hamidi, J. K., Shahriar, K., Rezai, B., Rostami, J., ۲۰۱۰. ...
  • Hasanipanah, M., Jahed Armaghani, D., Bakhshandeh Amnieh, H., Koopialipoor, M., ...
  • Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., ۲۰۰۹. Developing ...
  • Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H. ...
  • Huang, R., Huang, J., Ju, N., Li, Y., ۲۰۱۳. Automated ...
  • Hudson, J. A., ۱۹۹۲. Rock engineering systems. Theory and practice. ...
  • Hudson, J. A., ۲۰۱۳. A review of Rock Engineering Systems ...
  • Hudson, J. A., Harrison, J. P., ۲۰۰۰. Engineering rock mechanics: ...
  • Jiao, Y., Hudson, J. A., ۱۹۹۵. The fully-coupled model for ...
  • Koopialipoor, M., Fahimifar, A., Ghaleini, E. N., Momenzadeh, M., Armaghani, ...
  • Latham, J. P., Lu, P., ۱۹۹۹. Development of an assessment ...
  • Mazzoccola, D. F., Hudson, J. A., ۱۹۹۶. A comprehensive method ...
  • Mohammadi, H., Azad, A., ۲۰۲۱. Prediction of ground settlement and ...
  • Mokhtari, S., Mooney, M. A., ۲۰۲۰. Predicting EPBM advance rate ...
  • Montgomery, D. C., Peck, E. A., Vining, G. G., ۲۰۲۱. ...
  • Moore, I. D., Gessler, P. E., Nielsen, G. A. E., ...
  • Naghadehi, M. Z., Jimenez, R., KhaloKakaie, R., Jalali, S. M. ...
  • Nagrecha, K., Fisher, L., Mooney, M., Rodriguez-Nikl, T., Mazari, M., ...
  • Okubo, S., Fukui, K., Chen, W., ۲۰۰۳. Expert system for ...
  • Ozdemir L., ۱۹۷۷. Development of theoretical equations for predicting tunnel ...
  • Rahmati, A., Faramarzi, L., Sanei, M. ۲۰۱۴. Development of a ...
  • Rana, A., Bhagat, N. K., Jadaun, G. P., Rukhaiyar, S., ...
  • Robbins, R.J., ۱۹۹۲. Large diameter hard rock boring machines: state ...
  • Rozos, D., Bathrellos, G. D., Skillodimou, H. D., ۲۰۱۱. Comparison ...
  • Rozos, D., Pyrgiotis, L., Skias, S., Tsagaratos, P., ۲۰۰۸. An ...
  • Salimi, A., Rostami, J., Moormann, C., Delisio, A., ۲۰۱۶. Application ...
  • Satici, Ö., Hindistan, A., ۲۰۰۶. Drilling and blasting as a ...
  • Shin, H. S., Kwon, Y. C., Jung, Y. S., Bae, ...
  • Spathis, A., Gupta, R. N., ۲۰۱۲. Tunneling in rock by ...
  • Tarkoy P. J. ۱۹۷۵. Rock hardness index properties and geotechnical ...
  • Yagiz, S., ۲۰۰۸. Utilizing rock mass properties for predicting TBM ...
  • Yagiz, S., Karahan, H., ۲۰۱۱. Prediction of hard rock TBM ...
  • Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S., ۲۰۰۹. Application ...
  • Yang, Y. J., Zhang, Q., ۱۹۹۸. The application of neural ...
  • Younessi, A., Rasouli, V., ۲۰۱۰. A fracture sliding potential index ...
  • Zhang, L. Q., Yang, Z. F., Liao, Q. L., Chen, ...
  • Zhao, Z., Gong, Q., Zhang, Y., Zhao, J., ۲۰۰۷. Prediction ...
  • Zhou, J., Qiu, Y., Armaghani, D. J., Zhang, W., Li, ...
  • Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, ...
  • Zhou, J., Yazdani Bejarbaneh, B., Jahed Armaghani, D., Tahir, M. ...
  • نمایش کامل مراجع