Cardiac Arrhythmia Detection Using Wavelet Transform and convolutional neural networ

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 119

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELEMECHCONF08_230

تاریخ نمایه سازی: 20 آذر 1403

چکیده مقاله:

The detection of cardiac arrhythmias is highly significant as these irregularities can indicate serious heart conditions such as atrial fibrillation, tachycardia, or heart blocks. If not identified promptly, arrhythmias can lead to severe complications like stroke, heart failure, or cardiac arrest. Leveraging technologies such as deep learning and time-frequency transformations enhances the accuracy and speed of arrhythmia detection. This advancement plays a crucial role in improving treatment outcomes and reducing the risks associated with these disorders. In this paper, a new method based on wavelet transform (WT) and convolutional neural network (CNN) is presented. The simulatioan results on the MIT-BIH dataset shows that the accuracy of the proposed method is ۹۹.۸%.

نویسندگان

Tara Afzali

Master of Information Technology-Computer Networks Mazandaran Higher Education Institute of Technology Babol, Mazandaran, Iran

Meisam Yadollahzadeh-Tabari

Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran