Numerical approximation for generalized fractional Volterra integro-differential equations via parabolic contour
محل انتشار: مجله علوم ریاضی کاسپین، دوره: 13، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 144
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJMS-13-1_017
تاریخ نمایه سازی: 18 آذر 1403
چکیده مقاله:
In this article, a numerical scheme is constructed to approximate the generalized fractional Volterra integro-differential equations with the regularized Prabhakar derivative. The solution of the problem is represented in the form of inverse Laplace transform in the complex plane.Then we select the parabolic contour as an optimal contour and use trapezoidal rule to approximate the inverse Laplace transform.Next, the performance of the numerical scheme is implemented for an example. Further, we obtain the absolute errors for various parameters by using our numerical scheme on parabolic contour and show that the proposed algorithm for the solution of inverse Laplace transform is a very well algorithm with high order accuracy.
کلیدواژه ها:
Laplace Transforms ، Parabolic contour ، Generalized fractional Volterra integro-differential equations
نویسندگان
Shiva Eshaghi
Department of Basic Science, Kermanshah University of Technology, Kermanshah, Iran