Comparative Study of Different Classification Methods and Winner Takes All Approach

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 33

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-10-10_016

تاریخ نمایه سازی: 17 آذر 1403

چکیده مقاله:

One of the most popular methods in remote sensing for gathering and evaluating satellite data is the classification of images. Several categories exist for image classification techniques, including supervised and unsupervised classification, pixel-based, object-based, and rule-based approaches. Each type of technique has pros and cons of its own. Choosing the method that produces the best results is one of the issues with image classification. The "best" model for classifying images relies on the particular task and the dataset used. The ideal classification technique is a crucial component in increasing classification accuracy. The strengths and drawbacks of various models vary, so selecting one that is appropriate for the job is critical. The main objective of this research is to analyze and compare the results of each classifier used, including ISODATA, K-mean, Maximum likelihood, Minimum distance, Support vector machine, and Neural network then integrate these different types of classification using the winners-takes-all classification approach in order to try to improve the results. The classified images were assessed, and both the overall accuracy and kappa coefficient were calculated and gave ۷۹.۵۰%, ۷۳.۸۹%, ۷۷.۰۵%, and ۸۴.۹۸%, ۸۶.۵۳%, ۸۷.۱۸%, and ۸۸.۶۹% for ISODATA, K-means, Minimum distance (MD), Maximum likelihood (MXL), Support vector machine (SVM), Neural network (NNT), and winner takes all (WTA), respectively. From the results, the Winner takes all (WTA) presented a superior in terms of the overall accuracy and kappa coefficient. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۱۰-۰۱۶ Full Text: PDF

کلیدواژه ها:

Classification ، Kappa Coefficient ، Error Matrix ، Winner Takes All Classification.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Singh, M., & Tyagi, K. D. (2021). Pixel based classification ...
  • Soliman, O. S., & Mahmoud, A. S. (2012). A classification ...
  • Abburu, S., & Babu Golla, S. (2015). Satellite Image Classification ...
  • Briney, A. (2019). An Overview of Remote Sensing. ThoughtCo, New ...
  • Lu, D., & Weng, Q. (2007). A survey of image ...
  • Foody, G. M., Pal, M., Rocchini, D., Garzon-Lopez, C. X., ...
  • Shivakumar, B. R., & Rajashekararadhya, S. V. (2018). Investigation on ...
  • Huang, C., Davis, L. S., & Townshend, J. R. G. ...
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). ...
  • Pal, M., & Mather, P. M. (2005). Support vector machines ...
  • Mathur, A., & Foody, G. M. (2004). Land cover classification ...
  • Salah, M. (2017). A survey of modern classification techniques in ...
  • D., S., Deepa, P., & K., V. (2017). Remote Sensing ...
  • Sathya, P., & Baby-Deepa, V. (2017). Analysis of Supervised Image ...
  • Manohar, N., Pranav, M. A., Aksha, S., & Mytravarun, T. ...
  • Murtaza, K. O., & Romshoo, S. A. (2014). Determining the ...
  • Altaei, M. S. M., & Mhaimeed, A. D. (2017). Satellite ...
  • Neware, R., & Khan, A. (2018). Survey on Classification Techniques ...
  • Pandya, A., & Science, C. (2015). Classification of Vegetation Area ...
  • Vimala, R, Marimuthu, A., Venkateswaran, S., & Poongodi, R. (2020). ...
  • Ouchra, H., Belangour, A., & Erraissi, A. (2023). Machine Learning ...
  • Yasin, H. E., & Kornel, C. (2024). Evaluating Satellite Image ...
  • Ouchra, H., Belangour, A., & Erraissi, A. (2024). Supervised Machine ...
  • Nigar, A., Li, Y., Jat Baloch, M. Y., Alrefaei, A. ...
  • Ahmadi, K. (2024). Assessment of the Accuracy of Various Machine ...
  • Vasquez, J., Acevedo-Barrios, R., Miranda-Castro, W., Guerrero, M., & Meneses-Ospina, ...
  • Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means ...
  • Abinaya, V., & Poonkuntran, S. (2019). Classification of satellite image ...
  • Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood ...
  • Ibrahim, S. (2019). Comparative Analysis of Support Vector Machine (SVM) ...
  • Sanghvi, K. (2020). Image Classification Techniques. Medium, San Francisco, United ...
  • Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, 273-297. ...
  • Kranjčić, N., Cetl, V., Matijević, H., & Markovinović, D. (2023). ...
  • Hasan, M., Ullah, S., Khan, M. J., & Khurshid, K. ...
  • Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., ...
  • Ustuner, M., Esetlili, M. T., Sanli, F. B., Abdikan, S., ...
  • Patil, M. B., Desai, C. G., & Umrikar, B. N. ...
  • Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & ...
  • نمایش کامل مراجع