Robust Fuzzy Control of Uncertain Two-axis Inertially Stabilized Platforms Using a Disturbance Observer: A Backstepping-based Adaptive Control Approach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-1_002

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

kground and Objectives: The two-axis inertially stabilized platforms (ISPs) face various challenges such as system nonlinearity, parameter fluctuations, and disturbances which makes the design process more complex. To address these challenges effectively, the main objective of this paper is to realize the stabilization of ISPs by presenting a new robust model-free control scheme.Methods: In this study, a robust adaptive fuzzy control approach is proposed for two-axis ISPs. The proposed approach leverages the backstepping method as its foundational design mechanism, employing fuzzy systems to approximate unknown terms within the control framework. Furthermore, the control architecture incorporates a model-free disturbance observer, enhancing the system's robustness and performance. Additionally, novel adaptive rules are devised, and the uniform ultimate boundedness stability of the closed-loop system is rigorously validated using the Lyapunov theorem.Results: Using MATLAB/Simulink software, simulation results are obtained for the proposed control system and its performance is assessed in comparison with related research works across two scenarios. In the first scenario, where both the desired and initial attitude angles are set to zero, the proposed method demonstrates a substantial mean squared error (MSE) reduction: ۹۶.۲% for pitch and ۸۶.۷% for yaw compared to the backstepping method, and reductions of ۷۵% for pitch and ۳۳.۳% for yaw compared to the backstepping sliding mode control. In the second scenario, which involves a ۱۰-degree step input, similar improvements are observed alongside superior performance in terms of reduced overshoot and settling time. Specifically, the proposed method achieves a settling time for the pitch gimbal ۵۶.۶% faster than the backstepping method and ۵۸% faster for the yaw gimbal. Moreover, the overshoot for the pitch angle is reduced by ۵۳.۵% compared to backstepping and ۳۵.۵% compared to backstepping sliding mode control, while for the yaw angle, reductions of ۴۳.۶% and ۳۷.۶% are achieved, respectively.Conclusion: Through comprehensive simulation studies, the efficacy of the proposed algorithm is demonstrated, showcasing its superior performance compared to conventional control methods. Specifically, the proposed method exhibits notable improvements in reducing maximum deviation from desired angles, mean squared errors, settling time, and overshoot, outperforming both backstepping and backstepping sliding mode control methods.

نویسندگان

M. Ghalehnoie

Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.

A. Azhdari

Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.

J. Keighobadi

Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. M. Hilkert, “Inertially stabilized platform technology Concepts and principles,” ...
  • M. K. Masten, “Inertially stabilized platforms for optical imaging systems,” ...
  • X. Lei, Y. Zou, F. Dong, “A composite control method ...
  • J. Mao, S. Li, Q. Li, J. Yang, “Design and ...
  • J. Mao, J. Yang, X. Liu, S. Li, Q. Li, ...
  • F. Dong, X. Lei, W. Chou, “A dynamic model and ...
  • X. Zhou, H. Zhang, R. Yu, “Decoupling control for two-axis ...
  • Q. Mu, G. Liu, X. Lei, “A RBFNN-Based adaptive disturbance ...
  • X. Zhou, G. Gong, J. Li, H. Zhang, R. Yu, ...
  • S. Liu, H. Che, L. Sun, “Research on stabilizing and ...
  • F. Liu, H. Wang, “Fuzzy PID tracking controller for two-axis ...
  • N. Ghaeminezhad, W. Daobo, F. Farooq, “Stabilizing a gimbal platform ...
  • Q. Guo, G. Liu, B. Xiang, T. Wen, H. Liu, ...
  • S. Hong, K. D. Cho, C. H. Park, W. S. ...
  • A. Toloei, H. Asgari, “Quaternion-based finite-time sliding mode controller design ...
  • T. Wen, B. Xiang, W. Wong, “Coupling analysis and cross-feedback ...
  • X. Zhou, Y. Shi, L. Li, R. Yu, L. Zhao, ...
  • H.-C. Park, S. Chakir, Y. B. Kim, T. Huynh, “a ...
  • J. Deng, W. Xue, X. Zhou, Y. Mao, “On disturbance ...
  • Y. Wang, H. Lei, J. Ye, X. Bu, “Backstepping sliding ...
  • R. Yazdanpanah, J. Soltani, “Robust backstepping control of induction motor ...
  • M. M. Zohrei, A. Roosta, “Constrained adaptive backstepping sliding mode ...
  • M. M. Zohrei, A. Roosta, B. Safarinejadian, “Robust backstepping control ...
  • I. S. Azzam, A. G. Wassal, S. A. Maged, “Line ...
  • M. F. Reis, J. C. Monteiro, R. R. Costa, A. ...
  • S. Dey, T. K. Sunil Kumar, S. Ashok, S. K. ...
  • H. Khodadadi, M. R. J. Motlagh, M. Gorji, “Robust control ...
  • A. Assoud, A. V. Polynkov, “Improving the stabilization accuracy of ...
  • F. Wang, R. Wang, E. Liu, W. Zhang, “Stabilization control ...
  • S. Asgari, M. B. Menhaj, A. A. Suratgar, M. G. ...
  • X. Liu, J. Mao, J. Yang, S. Li, K. Yang, ...
  • D. Tian, M. Wang, F. Wang, R. Xu, “Adaptive sliding‐mode‐assisted ...
  • A. Kodhanda, J. P. Kolhe, M. M. Kuber, V. V. ...
  • Z. Ding, F. Zhao, Y. Lang, Z. Jiang, J. Zhu, ...
  • X. Yan, M. Chen, G. Feng, Q. Wu, S. Shao, ...
  • B. Xu, “Composite learning control of flexible-link manipulator using NN ...
  • M. M. Zohrei, H. R. Javanmardi, “Nonlinear observer-based control design ...
  • L. Wang, X. Li, Y. Liu, D. Mao, B. Zhang, ...
  • H. Gorjizadeh, M. Ghalehnoie, S. Negahban, A. Nikoofard, “Fuzzy controller ...
  • N. H. Giap, J. H. Shin, W. H. Kim, “Robust ...
  • نمایش کامل مراجع