Fusion of Classifiers Using Learning Automata Algorithm

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 94

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-1_006

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

kground and Objectives: Sonar data processing is used to identify and track targets whose echoes are unsteady. So that they aren’t trusty identified in typical tracking methods. Recently, RLA have effectively cured the accuracy of undersea objective detection compared to conventional sonar objective cognition procedures, which have robustness and low accuracy. Methods: In this research, a combination of classifiers has been used to improve the accuracy of sonar data classification in complex problems such as identifying marine targets. These classifiers each form their pattern on the data and store a model. Finally, a weighted vote is performed by the LA algorithm among these classifiers, and the classifier that gets the most votes is the classifier that has had the greatest impact on improving performance parameters.Results: The results of SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and joint models have been compared with the proposed model. Considering that the objectives and databases are different, we benchmarked the average detection rate. In this comparison, Precision, Recall, F۱_Score, and Accuracy parameters have been considered and investigated in order to show the superior performance of the proposed method with other methods.Conclusion: The results obtained with the analytical parameters of Precision, Recall, F۱_Score, and Accuracy compared to the latest similar research have been examined and compared, and the values are ۸۷.۷۱%, ۸۸.۵۳%, ۸۷.۸%, and ۸۷.۴% respectively for each of These parameters are obtained in the proposed method.

نویسندگان

S. Mahmoudikhah

Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

S. H. Zahiri

Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

I. Behravan

Department of Electrical Engineering, University of Birjand, Birjand, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • X. Fan, L. Lu, P. Shi, X. Zhang, "A novel ...
  • J. U. ROBERT, Principles of underwater sound for engineers. MCGRAW-HILL., ...
  • S. J. Davey, M. G. Rutten, B. Cheung, "A comparison ...
  • M. Hassaballah, A. I. Awad, Deep learning in computer vision: ...
  • D. P. Williams, "Underwater target classification in synthetic aperture sonar ...
  • M. Valdenegro-Toro, "Best practices in convolutional networks for forward-looking sonar ...
  • E. L. Ferguson, R. Ramakrishnan, S. B. Williams, C. T. ...
  • G. Huo, Z. Wu, J. Li, "Underwater object classification in ...
  • F. Mousavipour, M. R. Mosavi, "Sonar data classification using neural ...
  • Q. Li, L. Song, Y. Zhang, "Multiple extended target tracking ...
  • E. Fan, W. Xie, J. Pei, K. Hu, X. Li, ...
  • T. Li, J. Prieto, H. Fan, J. M. Corchado, "A ...
  • W. Xiong, X. Gu, Y. Cui, "Tracking and data association ...
  • L. Snidaro, J. Garcia-Herrera, J. Llinas, E. Blasch, "Context-enhanced information ...
  • J. Raol, "Multi-Sensor Data Fusion with MATLAB. ۲۰۰۹," ed: CRC ...
  • T. M. Mitchell, "Does machine learning really work?," AI magazine, ...
  • P. Domingos, The master algorithm: How the quest for the ...
  • A. K. Bathla, S. Bansal, M. Kumar, "OKC classifier: an ...
  • K. Taunk, S. De, S. Verma, A. Swetapadma, "A brief ...
  • D. Wettschereck, T. Dietterich, "Locally adaptive nearest neighbor algorithms," Adv. ...
  • M. Sharma, S. K. Sharma, "Generalized K-nearest neighbour algorithm-a predicting ...
  • C. M. Bishop, Neural networks for pattern recognition. Oxford university ...
  • H. Taud, J. Mas, "Multilayer perceptron (MLP),” in Geomatic approaches ...
  • K. L. Du, M. N. Swamy, Neural networks and statistical ...
  • M. A. Thathachar, P. S. Sastry, Networks of learning automata: ...
  • F. Hourfar, H. J. Bidgoly, B. Moshiri, K. Salahshoor, A. ...
  • M. L. v. TSetlin, "Automaton theory and modeling of biological ...
  • N. S. Shahraki, S. H. Zahiri, "DRLA: Dimensionality ranking in ...
  • Q. Wu, H. Liao, "Function optimisation by learning automata," Inf. ...
  • B. N. K. Reddy, C. A. Vaithilingam, S. Kamalakkannan, "SONAR ...
  • Q. Wang, S. Du, W. Zhang, F. Wang, "Active sonar ...
  • F. Ahmad, M. Z. Ansari, R. Anwar, B. Shahzad, A. ...
  • H. Yang, Y. Huang, Y. Liu, "Spatial attention deep convolution ...
  • S. Z. Tian, D. B. Chen, Y. Fu, J. L. ...
  • نمایش کامل مراجع