Fusion of Classifiers Using Learning Automata Algorithm
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 94
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-13-1_006
تاریخ نمایه سازی: 11 آذر 1403
چکیده مقاله:
kground and Objectives: Sonar data processing is used to identify and track targets whose echoes are unsteady. So that they aren’t trusty identified in typical tracking methods. Recently, RLA have effectively cured the accuracy of undersea objective detection compared to conventional sonar objective cognition procedures, which have robustness and low accuracy. Methods: In this research, a combination of classifiers has been used to improve the accuracy of sonar data classification in complex problems such as identifying marine targets. These classifiers each form their pattern on the data and store a model. Finally, a weighted vote is performed by the LA algorithm among these classifiers, and the classifier that gets the most votes is the classifier that has had the greatest impact on improving performance parameters.Results: The results of SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and joint models have been compared with the proposed model. Considering that the objectives and databases are different, we benchmarked the average detection rate. In this comparison, Precision, Recall, F۱_Score, and Accuracy parameters have been considered and investigated in order to show the superior performance of the proposed method with other methods.Conclusion: The results obtained with the analytical parameters of Precision, Recall, F۱_Score, and Accuracy compared to the latest similar research have been examined and compared, and the values are ۸۷.۷۱%, ۸۸.۵۳%, ۸۷.۸%, and ۸۷.۴% respectively for each of These parameters are obtained in the proposed method.
کلیدواژه ها:
نویسندگان
S. Mahmoudikhah
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
S. H. Zahiri
Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.
I. Behravan
Department of Electrical Engineering, University of Birjand, Birjand, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :