Utilizing Normalized Mutual Information as a Similarity Measure for EEG and fMRI Fusion

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 24

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-1_011

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

kground and Objectives: Neuroscience research can benefit greatly from the fusion of simultaneous recordings of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data due to their complementary properties. We can extract shared information by coupling two modalities in a symmetric data fusion.Methods: This paper proposed an approach based on the advanced coupled matrix tensor factorization (ACMTF) method for analyzing simultaneous EEG-fMRI data. To alleviate the strict equality assumption of shared factors in the common dimension of the ACMTF, the proposed method used a similarity criterion based on normalized mutual information (NMI). This similarity criterion effectively revealed the underlying relationships between the modalities, resulting in more accurate factorization results.Results: The suggested method was utilized on simulated data with various levels of correlation between the components of the two modalities. Despite different noise levels, the average match score improved compared to the ACMTF model, as demonstrated by the results.Conclusion: By relaxing the strict equality assumption, we can identify shared components in a common mode and extract shared components with higher performance than the traditional methods. The suggested method offers a more robust and effective way to analyze multimodal data sets. The findings highlight the potential of the ACMTF method with NMI-based similarity criterion for uncovering hidden patterns in EEG and fMRI data.

کلیدواژه ها:

Data Fusion ، Coupled Matrix Tensor Factorization ، Electroencephalogram (EEG) ، functional Magnetic Resonance Imaging (fMRI) ، Normalized Mutual Information (NMI)

نویسندگان

Z. Rabiei

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.

H. Montazery Kordy

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Z. Jiang, Y. Liu, W. Li, Y. Dai, L. Zou, ...
  • D. Lahat, T. l. Adali, C. Jutten, "Multimodal data fusion: ...
  • T. Warbrick, "Simultaneous EEG-fMRI: what have we learned and what ...
  • S. Van Eyndhoven, B. l. Hunyadi, L. De Lathauwer, et ...
  • H. K. Aljobouri, "Independent component analysis with functional neuroscience data ...
  • J. Sui, D. Zhi, V. D. Calhoun, "Data-driven multimodal fusion: ...
  • L. Du, H. Wang, J. Zhang, S. Zhang, L. Guo, ...
  • R. F. Silva, S. M. Plis, T. l. Adali M. ...
  • Y. Jonmohamadi, S. Muthukumaraswamy, J. Chen et al., “Extraction of ...
  • G. R. Poudel, R. D. Jones, "Multimodal neuroimaging with simultaneous ...
  • E. Acar, T. G. Kolda, D. M. Dunlavy, “All-at-once optimization ...
  • E. Acar, M. A. Rasmussen, F. Savorani, et al., “Understanding ...
  • E. Acar, G. z. Gurdeniz, M. A. Rasmussen et al., ...
  • E. Acar, E. E. Papalexakis, G. z. Gurdeniz et al., ...
  • E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega et al., ...
  • B. Rivet, M. Duda, A. Guerin-Dugue, et al., "Multimodal approach ...
  • C. Chatzichristos, E. Kofidis, L. De Lathauwer et al., “Early ...
  • R. Mosayebi, G. A. Hossein-Zadeh, “Correlated coupled matrix tensor factorization ...
  • Y. Maeda, H. Kawaguchi, H. Tezuka, "Estimation of mutual information ...
  • M. Babaie-Zadeh, C. Jutten, "A general approach for mutual information ...
  • T. O. Kvalseth, "On normalized mutual information: measure derivations and ...
  • A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. ...
  • N. M. Correa, T. Eichele, T. l. Adali, et al., ...
  • S. Van Eyndhoven, P. DuPont, S. Tousseyn, et al., “Augmenting ...
  • M. Morante, "A lite parametric model for the hemodynamic response ...
  • D. A. Handwerker, J. M. Ollinger, M. D'Esposito, "Variation of ...
  • Z. Y. Shan, M. J. Wright, P. M. Thompson, K. ...
  • M. W. Woolrich, T. E. Behrens, S. M. Smith, "Constrained ...
  • C. Gössl, L. Fahrmeir, D. P. Auer, "Bayesian modeling of ...
  • C. Goutte, F. A. Nielsen, K. Hansen, "Modeling the hemodynamic ...
  • H. Mohimani, M. Babaie-Zadeh, C. Jutten, "A fast approach for ...
  • M. Babaie-Zadeh, C. Jutten, K. Nayebi, "Differential of the mutual ...
  • J. M. Walz, R. I. Goldman, M. Carapezza, J. Muraskin, ...
  • نمایش کامل مراجع