Towards Efficient Solutions of Space-Time Fractional Fuzzy Diffusion Equations: A Methodological Approach

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-21-4_011

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

This paper aims to introduce a groundbreaking methodology for deriving analytical solutions to the space-time fractional fuzzy diffusion equation. Our approach uniquely incorporates a Caputo generalized Hukuhara fractional derivative (of order \beta \in (۰,۲]) for the second-order spatial derivative, alongside a fuzzy Caputo-Katugampola generalized Hukuhara time-fractional derivative (of order \alpha \in (۰,۱)) for the first-order temporal derivative. The primary objective is to develop explicit and fundamental solutions for both the space-time fractional fuzzy diffusion equation and the time fractional fuzzy diffusion equation, encompassing various forms of fuzzy Caputo-Katugampola generalized Hukuhara time-fractional differentiability. We initiate our study by thoroughly analyzing the fuzzy Fourier and fuzzy \wp-Laplace transforms of the equation. To demonstrate the practical utility and effectiveness of our proposed method, we apply it to two specific models: a fuzzy groundwater flow model for computing pressure head, and a fuzzy model for determining the concentration of tumor cells. The results obtained highlight the method's efficiency and precision in addressing the complexities of both the space-time fractional fuzzy diffusion equation and the time fractional fuzzy diffusion equation.

کلیدواژه ها:

The fuzzy Caputo-Katugampola generalized Hukuhara time-fractional derivative ، The fuzzy space-time fractional Diffusion equation ، The fuzzy \wp-Laplace transform ، the fuzzy Fourier transform ، The Caputo generalized Hukuhara fractional derivative

نویسندگان

Mohammad Mousavi Nasr

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P.O. Box ۱۳۱۸۵/۷۶۸, Tehran, Iran.

Mohammad Sadegh Asgari

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P.O. Box ۱۳۱۸۵/۷۶۸, Tehran, Iran.

Mohsen Ziamanesh

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P.O. Box ۱۳۱۸۵/۷۶۸, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional ...
  • T. Allahviranloo, Z. Gouyandeh, A. Armand, Fuzzy fractional differential equations ...
  • T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu, On fuzzy ...
  • A. Alshbeel, A. Azmi, A. K. Alomari, Generalized Caputo-Katugampola for ...
  • M. P. Anderson, W. W. Woessner, R. J. Hunt, Applied ...
  • A. Armand, T. Allahviranloo, Z. Gouyandeh, Some fundamental results on ...
  • A. Atangana, Mathematical analysis of groundwater flow models, CRC Press, ...
  • B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer, ...
  • J. N. Del Pino, P. D’iaz, Pesticide distribution and movement. ...
  • H. Eghlimi, M. S. Asgari, A study of the time-fractional ...
  • M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy ...
  • On the fuzzy solutions of time-fractional problems [مقاله ژورنالی]
  • Z. Gouyandeh, T. Allahviranloo, S. Abbasbandy, A. Armand, A fuzzy ...
  • K. M. Hiscock, V. F. Bense, Hydrogeology: Principles and practice, ...
  • N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional ...
  • J. Istok, Groundwater modeling by the finite element method (water ...
  • F. Jarad, T. Abdeljawad, A modified Laplace transform for certain ...
  • M. Keshavarz, T. Allahviranloo, Fuzzy fractional diffusion processes and drug ...
  • V. Lakshmikantham, T. Bhaskar, J. Devi, Theory of set differential ...
  • J. D. Logan, Applied partial differential equations, Springer Cham, (۲۰۱۵). ...
  • D. Mohapatra, S. Chakraverty, M. Alshammari, Time fractional heat equation ...
  • L. Sajedi, N. Eghbali, H. Aydi, Impulsive coupled system of ...
  • W. Sawangtong, P. Sawangtong, An analytical solution for the Caputo ...
  • H. Viet Long, N. Thi Kim Son, H. Thi Thanh ...
  • W. W. Woessner, E. P. Poeter, Hydrogeologic properties of earth ...
  • H. C. Wu, The improper fuzzy Riemann integral and its ...
  • نمایش کامل مراجع