A new optimum statistical estimation of the traffic intensity parameter for the M/M/۱/K queuing model based on fuzzy and non-fuzzy criteria

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 9

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCSM-2-1_009

تاریخ نمایه سازی: 6 آذر 1403

چکیده مقاله:

This article focuses on the M/M/ ۱ /K queuing model. In this model, the inter-arrival times ofcustomers to the system are random variables with an exponential distribution parameterized by λ , andthe service times of customers are random variables with an exponential distribution parameterized byµ . We aim to estimate the traffic intensity parameter of this model using Bayesian, E-Bayesian, andhierarchical Bayesian methods. These methods utilize the entropy loss function and an appropriate priordistribution for the independent parameters λ and µ . Additionally, we employ the shrinkage-basedmaximum likelihood estimation method to obtain the parameter estimates. To determine the desiredtraffic intensity parameter estimate, we introduce a decision criterion based on a cost function, anda fuzzy criterion called the Average Customer Satisfaction Index (ACSI). The goal is to select theestimation with a higher ACSI index. To facilitate understanding, we compare this estimation using theMonte Carlo simulation method and two numerical examples based on the ACSI index.

نویسندگان

Iman Makhdoom

Payame Noor University