Optimization of Hand Gesture Object Detection Using Fine-Tuning Techniques on an Integrated Service of Smart Robot
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 83
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-35-4_009
تاریخ نمایه سازی: 2 آذر 1403
چکیده مقاله:
Robots are one of the testbeds that can be used as objects for the application of intelligent systems in the current era of Industry ۴.۰. With such systems, robots can interact with humans through perception (sensors) like cameras. Through this interaction, it is expected that robots can assist humans in providing reliable and efficient service improvements. In this research, the robot collects data from the camera, which is then processed using a Convolutional Neural Network (CNN). This approach is based on the adaptive nature of CNN in recognizing visuals captured by the camera. In its application, the robot used in this research is a humanoid model named Robolater, commonly known as the Integrated Service Robot. The fundamental reason for using a humanoid robot model is to enhance human-robot interaction, aiming to achieve better efficiency, reliability, and quality. The research begins with the implementation of hardware and software so that the robot can recognize human movements through the camera sensor. The robot is trained to recognize hand gestures using the Convolutional Neural Network method, where the deep learning algorithm, as a supervised type, can recognize movements through visual inputs. At this stage, the robot is trained with various weights, backbones, and detectors. The results of this study show that the F-T Last Half technique exhibits more stable performance compared to other techniques, especially with larger input scales (۶۴۰×۶۴۴). The model using this technique achieved a mAP of ۹۱.۶%, with a precision of ۸۴.۶%, and a recall of ۸۰.۶%.
کلیدواژه ها:
نویسندگان
Faikul Umam
Universitas Trunojoyo Madura
Hanifudin Sukri
Universitas Trunojoyo Madura
Ach Dafid
Universitas Trunojoyo Madura
Firman Maolana
Universitas Trunojoyo Madura
Mycel Natalis Stopper Ndruru
Universitas Trunojoyo Madura
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :