Data-Driven Robust Optimization Model For A Sustainable Inventory Scheduling Framework
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 264
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE10_058
تاریخ نمایه سازی: 1 آذر 1403
چکیده مقاله:
Production planning forms the backbone of global economies and supply chains, demanding a delicate balance between cost optimization and customer satisfaction. Scheduling material across interconnected production networks presents a complex analytical challenge, highlighting the need for data-driven insights to support informed decision-making. This research proposes an inventory scheduling framework that empowers decision-makers to monitor and control key production parameters, mitigating schedule risks and optimizing operational efficiency within the network. A sustainable framework of this study is to manage the work center energy consumption during Peak electricity load by prioritizing unit of flow for each work center. The inherent uncertainty in inventory scheduling, arising from factors such as work stage shortages and fluctuating order quantities, significantly impacts the ability to fulfill multi-product orders on time. To address this challenge, the framework incorporates both robust optimization and data-driven robust optimization approaches. This enables the system to adapt to fluctuations and uncertainties, ensuring operational resilience and achieving reliable fulfillment of multi-product orders while minimizing water consumption.
کلیدواژه ها:
Data-driven robust optimization ، Material requirements planning ، Robust Optimization Approach ، Material requirements planning ، Principal component analysis ، Kernel Density Estimation Introduction
نویسندگان
Ali Najaf Najafi
School of Industrial Engineering, Iran University of Science and Technology (IUST) Tehran, Iran