Comparison of Two Customer Segmentation Methods (Case Study: Customer Data from GreenWeb Company)

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 153

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICISE10_009

تاریخ نمایه سازی: 1 آذر 1403

چکیده مقاله:

In the world of competition between companies, it is required to cluster the customers based on the behaviors and preferences and it is a critical strategic imperative in any company. In this research, the well-known methods of RFM and Clara clustering based on Manhattan and Euclidean measures are used to cluster the customers of GreenWeb company. The results show the frequency of customers in some of the clusters are slightly equal whereas the number of clustering in each three methods are not equal.

کلیدواژه ها:

نویسندگان

Mehdi Mohammadi

CEO of GreenWeb Co.Mashhad, Iran

Mehdi Jabbari Noghabi

Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran, Department of Statistics Ferdowsi University of Mashhad Mashhad, Iran

Sanaz Nia

Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran

Rozhin Sharifi

Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran

Ameneh Mohammadi

Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran