Comparison of Two Customer Segmentation Methods (Case Study: Customer Data from GreenWeb Company)
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 153
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE10_009
تاریخ نمایه سازی: 1 آذر 1403
چکیده مقاله:
In the world of competition between companies, it is required to cluster the customers based on the behaviors and preferences and it is a critical strategic imperative in any company. In this research, the well-known methods of RFM and Clara clustering based on Manhattan and Euclidean measures are used to cluster the customers of GreenWeb company. The results show the frequency of customers in some of the clusters are slightly equal whereas the number of clustering in each three methods are not equal.
کلیدواژه ها:
نویسندگان
Mehdi Mohammadi
CEO of GreenWeb Co.Mashhad, Iran
Mehdi Jabbari Noghabi
Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran, Department of Statistics Ferdowsi University of Mashhad Mashhad, Iran
Sanaz Nia
Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran
Rozhin Sharifi
Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran
Ameneh Mohammadi
Department of Data Analysis & BI GreenWeb Co. Mashhad, Iran