Airwake Characteristics of NATO-Generic Destroyer: A Numerical Study

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 26

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-18-1_009

تاریخ نمایه سازی: 30 آبان 1403

چکیده مقاله:

This paper presents a numerical investigation of the air wake around a generic surface combatant ship called NATO-Generic Destroyer (NATO-GD). Naval surface combatants with flight decks must be designed taking aerodynamic concerns into account. Most of the previous studies have employed the Simple Frigate Shape (SFS) and its modified version (SFS۲) to investigate the airwake. However, these generic geometries do not accurately represent modern warship designs. To address this, a modern geometry called NATO-GD proposed by the NATO Research Task Group, which represents the features of a modern destroyer, was utilized in the present work. The objective is to examine the air wake on the helicopter deck to ensure the safe operation of air vehicles such as helicopters and drones. The three-dimensional, transient airflow around the ship was solved using the unsteady Reynolds-Averaged Navier-Stokes (URANS) and Detached Eddy Simulation (DES) turbulence models. Besides, the effect of inflow was investigated by comparing uniform velocity inlet and atmospheric boundary layer (ABL) for various wind-over-deck (WOD) angles. The numerical approach was verified for the URANS turbulence model using the Grid Convergence Index (GCI) method. The numerical uncertainty was calculated with four different methods and the uncertainty was found between ۱.۶% and ۲.۱%. A detailed discussion of the flow field above the flight deck was conducted to compare the URANS and DES models fairly. It was concluded that employing the ABL profile as a boundary condition is more suitable for achieving accurate ship aerodynamics calculations. The ABL velocity profile makes a significant difference in the velocity components. According to the URANS results, these deviations are found as ۸.۲۳% in the x-component, ۱.۲۵% in the y-component and ۴.۸۹% in the z-component. The deviations were calculated using the root mean square error (RMSE) method. Furthermore, although the numerical results of the URANS and DES models were similar at some points, detailed flow field analysis is only possible with the DES results to determine safe approach patterns for air vehicles. Various wind speeds, directions, and the resulting wake structures were tested to analyze the wake behavior over the helicopter deck under different air conditions. When the wind comes from the port side with ۱۵ degrees (R۱۵) it wind changes the intense turbulence region and creates a low turbulence area on the starboard side while R۳۰ wind causes small scale vortices breaking this region.

کلیدواژه ها:

نویسندگان

S. Sari

Yildiz Technical University, Department of Naval Architecture and Marine Engineering, ۳۴۳۴۹ Istanbul, Turkiye

A. Dogrul

National Defense University, Turkish Naval Academy, Department of Naval Architecture and Marine Engineering, ۳۴۹۴۲ Istanbul, Turkiye

S. Bayraktar

Yildiz Technical University, Department of Marine Engineering, ۳۴۳۴۹ Istanbul, Turkiye

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abu-Zidan, Y., Mendis, P., & Gunawardena, T. (۲۰۲۰). Impact of ...
  • Cindori, M., Čajić, P., Džijan, I., Juretić, F., & Kozmar, ...
  • Bardera, R.; Matias, J. C.; García-Magariño, A. Experimental validation of ...
  • Blocken, B., Stathopoulos, T., & Carmeliet, J. (۲۰۰۷). CFD simulation ...
  • Bogstad, M. C., Habashi, W. G., Akel, I., Ait-Ali-Yahia, D., ...
  • Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. ...
  • Cook, N. J. (۱۹۹۷). The Deaves and Harris ABL model ...
  • Cosner, R., Oberkampf, B., Rumsey, C., Rahaim, C., & Shih, ...
  • Dogrul, A. (۲۰۲۲). Numerical prediction of scale effects on the ...
  • Dooley, G. M., Krebill, A. F., Martin, J. E., Buchholz, ...
  • Dooley, G., Ezequiel Martin, J., Buchholz, J. H. J., & ...
  • Epps, B. (۲۰۱۷, January ۹). Review of vortex identification methods. ...
  • Forrest, J. S., & Owen, I. (۲۰۱۰). An investigation of ...
  • Gnanamanickam, E. P., Zhang, Z., Seth, D., & Leishman, J. ...
  • Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, ...
  • ITTC. (۲۰۱۴). ۷.۵-۰۳-۰۱-۰۱ uncertainty analysis in CFD, verification and validation ...
  • Jeong, J., & Hussain, F. (۱۹۹۵). On the identification of ...
  • Li, T., Wang, Y. B., Zhao, N., & Qin, N. ...
  • Major, D., Schmitz, S., Shipman, J. D., Bin, J., & ...
  • Menter, F. R. (۱۹۹۴). Two-equation eddy-viscosity turbulence models for engineering ...
  • Menter, F. R. (۲۰۰۹). Review of the shear-stress transport turbulence ...
  • Nisham, A., Terziev, M., Tezdogan, T., Beard, T., & Incecik, ...
  • Owen, I., Lee, R., Wall, A., & Fernandez, N. (۲۰۲۱). ...
  • Owen, I., Scott, P., & White, M. (۲۰۱۴). The effect ...
  • Reddy, K. R., Toffoletto, R., & Jones, K. R. W. ...
  • Ren, X., Su, H., Yu, H. H., & Yan, Z. ...
  • Richards, P. J., & Hoxey, R. P. (۱۹۹۳). Appropriate boundary ...
  • Richardson, L. F. (۱۹۱۱). The approximate arithmetical solution by finite ...
  • Roache, P. J. (۱۹۹۸). Verification of codes and calculations. AIAA ...
  • Rosenfeld, N., Kimmel, K., & Sydney, A. J. (۲۰۱۵, January ...
  • Sarı, S., Dogrul, A., & Bayraktar, S. (۲۰۲۲). The aerodynamic ...
  • Seth, D., Zhang, Z., Gnanamanickam, E. P., & Leishman, J. ...
  • Setiawan, H., Kevin, Philip, J., & Monty, J. P. (۲۰۲۲). ...
  • Sezen, S., Delen, C., Dogrul, A., & Atlar, M. (۲۰۲۱). ...
  • Sezen, S., Dogrul, A., Delen, C., & Bal, S. (۲۰۱۸). ...
  • Shi, Y., Li, G., Su, D., & Xu, G. (۲۰۲۰). ...
  • Shipman, J. D., & Bin, J. (۲۰۲۱.). Atmospheric boundary layer ...
  • Shukla, S., Singh, S. N., Sinha, S. S., & Vijayakumar, ...
  • Spalart, P. R. (۲۰۰۱). Young-person’s guide to detached-eddy simulation grids ...
  • Su, D., Xu, G., Huang, S., & Shi, Y. (۲۰۱۹). ...
  • Taymourtash, N., Zanotti, A., Gibertini, G., & Quaranta, G. (۲۰۲۲). ...
  • Thornhill, E., Wall, A., McTavish, S., & Lee, R. (۲۰۲۰). ...
  • Travin, A., Shur, M., Strelets, M., & Spalart, P. (۲۰۰۰). ...
  • Wall, A., Thornhill, E., Barber, H., McTavish, S., & Lee, ...
  • Watson, N. A., White, M., & Owen, I. (۲۰۱۹, June ...
  • Wilcox, D. C. (۲۰۰۶). Turbulence modeling for CFD (۳rd edition). ...
  • Wilcox, D. C. (۲۰۰۸). Formulation of the k-w turbulence model ...
  • Xing, T., & Stern, F. (۲۰۱۰). Factors of safety for ...
  • Yuan, W., Lee, R., & Wall, A. (۲۰۱۶, September ۲۳). ...
  • Yuan, W., Wall, A., & Lee, R. (۲۰۱۸). Combined numerical ...
  • Zamiri, A., & Chung, J. T. (۲۰۲۳). Numerical evaluation of ...
  • Zhang, D. (۲۰۱۷). Comparison of various turbulence models for unsteady ...
  • Zheng, W., Yan, C., Liu, H., & Luo, D. (۲۰۱۶). ...
  • Zhu, N., Zhang, Z., Gnanamanickam, E., & Gordon Leishman, J. ...
  • Zhu, N., Zhang, Z., Gnanamanickam, E., & Leishman, J. G. ...
  • نمایش کامل مراجع