Application of Convolutional Neural Networks to Control Quality of Resistance Spot Welding of Galvanized Steel Sheet
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 3
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 132
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-3_012
تاریخ نمایه سازی: 27 آبان 1403
چکیده مقاله:
This study used convolutional neural networks (CNN) to manage the quality of resistance spot welding by categorizing photos of welds on galvanized steel sheets. The welding parameters included ۱۹ cycles of welding time, ۸.۵ kA welding current, and ۰.۲۰ MPa electrode force. Endurance testing procedures were used to generate a dataset for the CNN model. Following that, weld surface photos were collected, nugget sizes were determined, shear strength was tested, the influence of zinc coating on the workpiece was investigated with a scanning electron microscope, and data was analyzed to classify the quality of the weld surface using K-fold cross-validation. The model was created with the pre-trained ResNet۵۰ architecture and fine-tuning procedures. According to the research findings, the CNN model achieved the greatest accuracy of ۹۳.۹۳%, with precision, recall, and F۱-Score values of ۰.۹۹۶, ۰.۹۹۸, and ۰.۹۹۷, respectively. The effect of the zinc coating was detected during the ۲۷۰th welding cycle, revealing deformation of the electrode contact surface and melting of the zinc coating, which, when paired with the copper electrode, resulted in the creation of brass deposits on the electrode contact surface. This impact caused the nugget size to fall outside of permitted limits, reducing shear strength.
کلیدواژه ها:
نویسندگان
B. Sonjaiyout
Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut's University of Technology Thonburi, Thailand
N. Sunthornpan
Department of Materials Science and Engineering, Shibaura Institute of Technology, Japan
P. Peasura
Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut's University of Technology Thonburi, Thailand
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :