A Petrov–Galerkin approach for the numerical analysis of soliton and multi-soliton solutions of the Kudryashov–Sinelshchikov equation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 63

فایل این مقاله در 26 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-31_013

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

This study delves into the potential polynomial and rational wave solutions of the Kudryashov–Sinelshchikov equation. This equation has multiple applications including the modeling of propagation for nonlinear waves in various physical systems. Through detailed numerical simulations using the finite element approach, we present a set of accurate solitary and soliton solutions for this equation. To validate the effectiveness of our proposed method, we utilize a collocation finite element approach based on quintic B-spline functions. Error norms, including L۲ and L∞, are employed to assess the precision of our numerical solutions, ensuring their reliability and accuracy. Visual representations, such as graphs derived from tabulated data, offer valuable insights into the dynamic changes of the equation over time or in response to varying parameters. Furthermore, we compute conservation quantities of motion and investigate the stability of our numerical scheme using Von Neumann theory, providing a comprehensive analysis of the Kudryashov–Sinelshchikov equation and the robustness of our computational approach. The strong alignment between our analytical and numerical results underscores the efficacy of our methodology, which can be extended to tackle more complex nonlinear models with direct relevance to various fields of science and engineering.

نویسندگان

H. Samy

Department of Mathematics and Computer Sciences, Faculty of Science, Port-Said University, Egypt.

W. Adel

Laboratoire Interdisciplinaire de l’Universite Francaise d’Egypte (UFEID Lab), Universite Francaise d’Egypte, Cairo ۱۱۸۳۷, Egypt.

I. Hanafy

Department of Mathematics and Computer Sciences, Faculty of Science, Port-Said University, Egypt.

M. Ramadan

Department of Mathematics and Computer Sciences, Faculty of Science, Port-Said University, Egypt.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ak, T., Osman, M.S., and Kara, A.H. Polynomial and rational ...
  • Ali, L., Liu, X., Ali, B., Mujeed, S., Abdal, S., ...
  • Belhocine, A., and Abdullah, O.I. Thermomechanical model for the analysis ...
  • Bildik, N., and Deniz, S. New approximate solutions to the ...
  • Chettri, K., Tamang, J., Chatterjee, P., and Saha, A. Dynamics ...
  • El-shamy, O., El-barkoki, R., Ahmed, H.M., Abbas, W., and Samir, ...
  • Feng, Y.-Y., and Wang, C.-H. Discontinuous finite element method applied ...
  • Gepreel, K. A. Analytical methods for nonlinear evolution equations in ...
  • Ghanbari, B., Kumar, S., Niwas, M., and Baleanu, D. The ...
  • Gohar, M., Li, C., and Li, Z. Finite difference methods ...
  • He, J.-H., Qie, N., and He, C.-H. Solitary waves travelling ...
  • Hyder, A.-A., and Barakat, M.A. General improved Kudryashov method for ...
  • Jamshed, W. Finite element method in thermal characterization and streamline ...
  • Jin, Y.-T., and Chen, A.-H. Resonant solitary wave and resonant ...
  • Jisha, C.R., Dubey, R.K., Benton, D., and Rashid, A. The ...
  • Johnson, R.S. Water waves and Korteweg–de Vries equations, J. Fluid ...
  • Karakoc, S.B.G., Saha, A., Bhowmik, S.K., and Sucu, D.Y. Numerical ...
  • Karakoc, S.B.G., Saha, A., and Sucu, D. A novel implementation ...
  • Kruglov, V.I., and Triki, H. Propagation of coupled quartic and ...
  • Kumar, S., Niwas, M., and Dhiman, S.K. Abundant analytical soliton ...
  • Leissa, A. The historical bases of the Rayleigh and Ritz ...
  • Liu, H., Zheng, X., Wang, H., and Fu, H. Error ...
  • Lu, J. (۲۰۱۸). New exact solutions for Kudryashov–Sinelshchikov equation, Adv. ...
  • Mohebbi, A., and Dehghan, M. High-order compact solution of the ...
  • Nakazawa, S. Computational Galerkin methods, Comput. Methods Appl. Mech. Eng. ...
  • Ozisik, M., Secer, A., Bayram, M., Cinar, M., Ozdemir, N., ...
  • Pal, N.K., Chatterjee, P., and Saha, A. Solitons, multi-solitons and ...
  • Rabinowitz, P.H. On a class of nonlinear Schrodinger equations, Z. ...
  • Ramadan, M., and Aly, H. New approach for solving of ...
  • Rezaei, S., Harandi, A., Moeineddin, A., Xu, B.-X., and Reese, ...
  • Rubinstein, J. Sine-Gordon equation, J. Math. Phys. ۱۱(۱), (۱۹۷۰), ۲۵۸–۲۶۶ ...
  • Ryabov, P.N. Exact solutions of the Kudryashov–Sinelshchikov equation, Appl. Math. ...
  • Saeed, T., and Abbas, I. Finite element analyses of nonlinear ...
  • Shaikhova, G., Kutum, B., Altaybaeva, A., and Rakhimzhanov, B. Exact ...
  • Sultana, M., Arshad, U., Abdel-Aty, A.-H., Akgül, A., Mahmoud, M., ...
  • Weickert, J., Romeny, B., and Viergever, M. Efficient and reliable ...
  • Yang, X., and He, X. A fully-discrete decoupled finite element ...
  • Yin, X., Xu, L., and Yang, L. Evolution and interaction ...
  • Yong, W., Zhang, W., Nguyen, H., Bui, X.-N., Choi, Y., ...
  • Zahra, W.K., Ouf, W.A., and El-Azab, M.S. An effective scheme ...
  • نمایش کامل مراجع