A novel mid-point upwind scheme for fractional-order singularly perturbed convection-diffusion delay differential equation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 32

فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-31_011

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

This study presents a numerical approach for solving temporal fractionalorder singularly perturbed parabolic convection-diffusion differential equations with a delay using a uniformly convergent scheme. We use the asymptotic analysis of the problem to offer a priori bounds on the exact solution and its derivatives. To discretize the problem, we use the implicit Euler technique on a uniform mesh in time and the midpoint upwind finite difference approach on a piece-wise uniform mesh in space. The proposed technique has a nearly first-order uniform convergence order in both spatial and temporal dimensions. To validate the theoretical analysis of the scheme, two numerical test situations for various values of ε are explored.

نویسندگان

N.A. Endrie

Department of Mathematics, College of Natural and Computational Science, Arba Minch University, Arba Minch, Ethiopia.

G.F. Duressa

Department of Mathematics, College of Natural and Computational Science, Arba Minch University, Arba Minch, Ethiopia.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Al-Mdallal, Q. and Syam, M. An efficient method for solving ...
  • Atangana, A. and Goufo, E. Extension of matched asymptotic method ...
  • Bijura, A.M. Nonlinear singular perturbation problems of arbitrary real orders, ...
  • Caputo, M. and Fabrizio, M. A new definition of fractional ...
  • Diekmann, O., Gils, S., Lunel, S. and Walther, H. Delay ...
  • Driver, R. Ordinary and delay differential equations, volume ۲۰. Springer ...
  • Gelu, F. and Duressa, G. Hybrid method for singularly perturbed ...
  • Govindarao, L. and Mohapatra, J. A second order numerical method ...
  • Hailu, W. and Duressa, G. Accelerated parameter-uniform numerical method for ...
  • Hailu, W. and Duressa, G. Uniformly convergent numerical scheme for ...
  • Hailu, W. and Duressa, G. A robust collocation method for ...
  • Hale, J. and Lunel, S. Introduction to functional differential equations, ...
  • Hassen, Z. and Duressa, G. Parameter uniform hybrid numerical method ...
  • Kolmanovskii, V. and Myshkis, A. Applied theory of functional differential ...
  • Kolmanovskii, V. and Nosov, V. Stability of functional differential equations, ...
  • Kuang, Y. Delay differential equations: with applications in population dynamics. ...
  • Kumar, K. and Vigo-Aguiar, J. Numerical solution of time-fractional singularly ...
  • Losada, J. and Nieto, J. Properties of a new fractional ...
  • Miller, J., O’riordan, E, and Shishkin, G. Fitted numerical methods ...
  • Miller, P. Applied asymptotic analysis, volume ۷۵. American Mathematical Soc., ...
  • Negero, N. and Duressa, G. An exponentially fitted spline method ...
  • Nelson, P. and Perelson, A. Mathematical analysis of delay differential ...
  • Podlubny, I. Fractional differential equations: an introduction to fractional derivatives, ...
  • Podlubny, I. An introduction to fractional derivatives, fractional differential equations, ...
  • Rangaig, N. and Pido, A. Finite difference approximation method for ...
  • Roop, J. Numerical approximation of a one-dimensional space fractional advection–dispersion ...
  • Roos, H., Stynes, M. and Tobiska, L. Robust numerical methods ...
  • Sadri, K. and Aminikhah, H. An efficient numerical method for ...
  • Sahoo, S. and Gupta, V. A robust uniformly convergent finite ...
  • Sayevand, K. and Pichaghchi, K. Efficient algorithms for analyzing the ...
  • Sayevand, K. and Pichaghchi, K. A novel operational matrix method ...
  • Shakti, D., Mohapatra, J., Das, P. and Vigo-Aguiar, J. A ...
  • Villasana, M. and Radunskaya, A. A delay differential equation model ...
  • Yuste, S. and Acedo, L. An explicit finite difference method ...
  • Zhao, T. Global periodic-solutions for a differential delay system modeling ...
  • نمایش کامل مراجع