Adaptive mesh based Haar wavelet approximation for a singularly perturbed integral boundary problem

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98

فایل این مقاله در 28 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-31_007

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

This research presents a nonuniform Haar wavelet approximation of a singularly perturbed convection-diffusion problem with an integral boundary. The problem is discretized by approximating the second derivative of the solution with the help of a nonuniform Haar wavelets basis on an arbitrary nonuniform mesh. To resolve the multiscale nature of the problem, adaptive mesh is generated using the equidistribution principle. This approach allows for the dynamical adjustment of the mesh based on the solution’s behavior without requiring any information about the solution. The combination of nonuniform wavelet approximation and the use of adaptive mesh leads to improved accuracy, efficiency, and the ability to handle the multiscale behavior of the solution. On the adaptive mesh rigorous error analysis is performed showing that the proposed method is a second-order parameter uniformly convergent. Numerical stability and computational efficiency are validated in various tables and plots for numerical results obtained by the implementation of two test examples.

نویسندگان

P. Shukla

Department of Engineering Sciences, Indian Institute of Information Technology and Management Gwalior, Gwalior, Madhya Pradesh, ۴۷۴۰۱۵, India.

S. Saini

Department of Mathematics, Vellore Institute of Technology, Vellore, Tamilnadu, ۶۳۲۰۱۴, India.

V. Devi

Department of Mathematics, Bhakt Darshan Govt. P.G. College, Pauri Garhwal, Uttrakhand, ۲۴۶۱۹۳, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahsan, M., Bohner, M., Ullah, A., Khan, A.A. and Ahmad, ...
  • Bakhvalov, N.S. Towards optimization of methods for solving boundary value ...
  • Beckett, G. and Mackenzie, J.A. Convergence analysis of finite difference ...
  • Beckett, G. and Mackenzie, J.A. On a uniformly accurate finite ...
  • Boor, C. Good approximation by splines with variable knots, In: ...
  • Cakir, M. and Amiraliyev, G.M. A finite difference method for ...
  • Chadha, N.M. and Kopteva, N. A robust grid equidistribution method ...
  • Das, P. and Mehrmann, V. Numerical solution of singularly perturbed ...
  • Das, P. and Natesan, S. Higher-order parameter uniform convergent schemes ...
  • Das, P., Rana, S. and Vigo-Aguiar, J. Higher order accurate ...
  • Debela, H.G. and Duressa, G.F. Uniformly convergent numerical method for ...
  • Dubeau, F., Elmejdani, S. and Ksantini, R. Non-uniform haar wavelets, ...
  • Goswami, J.C. and Chan, A.K. Fundamentals of wavelets: Theory, algorithms, ...
  • Gowrisankar, S. and Natesan, S. Robust numerical scheme for singularly ...
  • Haar, A. Zur Theorie der Orthogonalen Funktionensysteme. GeorgAugust-Universitat, Gottingen, ۱۹۰۹ ...
  • Hirsch, C. Numerical computation of internal and external flows: The ...
  • Huang, W. and Russell, R.D. Adaptive moving mesh methods, Springer, ...
  • Kopteva, N., Madden, N. and Stynes, M. Grid equidistribution for ...
  • Kopteva, N., and Stynes, M.A robust adaptive method for a ...
  • Kumar, S. and Kumar, M. Parameter-robust numerical method for a ...
  • Kumar, S., Kumar, S. and Sumit, A posteriori error estimation ...
  • Kumar, S., Sumit and Vigo-Aguiar, J. A parameter-uniform grid equidistribution ...
  • Lepik, U. Numerical solution of differential equations using haar wavelets. ...
  • Lepik, Ü. and Hein, H. Haar wavelets with applications, Springer, ...
  • LeVeque, R.J. Finite difference methods for ordinary and partial differential ...
  • Liu, L.-B., Long, G. and Cen, Z. A robust adaptive ...
  • Mackenzie, J.A. Uniform convergence analysis of an upwind finitedifference approximation ...
  • Mallat, S. A wavelet tour of signal processing, Elsevier ۱۹۹۹ ...
  • Melenk, J.M. Hp-finite element methods for singular perturbations, Springer, ۲۰۰۲ ...
  • Miller, J.J.H., O’Riordan, E. and Shishkin, G.I. Fitted numerical methods ...
  • Pandit, S. and Kumar, M. Haar wavelet approach for numerical ...
  • Podila, P.C. and Sundrani, V. A non-uniform haar wavelet method ...
  • Qiu, Y. and Sloan, D.M. Analysis of difference approximations to ...
  • Roos, H.G., Stynes, M. and Tobiska, L. Numerical methods for ...
  • Sah, K.K. and Gowrisankar, S. Richardson extrapolation technique on a ...
  • Shishkin, G.I. A difference scheme for a singularly perturbed equation ...
  • Wichailukkana, N., Novaprateep, B. and Boonyasiriwat, C. A convergence analysis ...
  • Woldaregay, M.M. and Duressa, G.F. Exponentially fitted tension spline method ...
  • Xu, X., Huang, W., Russell, R.D. and Williams, J.F. Convergence ...
  • Yapman, O. and Amiraliyev, G.M. A novel second-order fitted computational ...
  • نمایش کامل مراجع