An optimal control approach for solving an inverse heat source problem applying shifted Legendre polynomials

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-13-26_007

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

This study addresses the inverse issue of identifying the space-dependent heat source of the heat equation, which is stated using the optimal con-trol framework. For the numerical solution of this class of problems, an approach based on shifted Legendre polynomials and the associated oper-ational matrix is presented. The approach turns the primary problem into the solution of a system of nonlinear algebraic equations. To do this, the temperature and heat source variables are enlarged in terms of the shifted Legendre polynomials with unknown coefficients employed in the objectivefunction, inverse problem, and initial and Neumann boundary conditions. When paired with their operational matrix, these basis functions provide a quadratic optimization problem with linear constraints, which is then solved using the Lagrange multipliers approach. To assess the method’s efficacy and precision, two examples are provided.

کلیدواژه ها:

Inverse Problems ، Optimal control problem ، Shifted Legendre polynomials (SLPs) ، Heat Source ، Operational matrix

نویسندگان

T. Shojaeizadeh

Department of Mathematics, Qom Branch, Islamic Azad University, Qom, Iran.

M. Darehmiraki

Department of Mathematics, Behbahan Khatam Alanbia University of Technology, Khouzestan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbaszadeh, M. and Dehghan, M. Numerical and analytical investi-gations for ...
  • Abdelkawy, M.A., Babatin, M.M., Alnahdi, A.S. and Taha, T.M. Leg-endre ...
  • Ait Ben Hassi, E.M., Chorfi, S.E. and Maniar, L. Identification ...
  • Alpar, S. and Rysbaiuly, B. Determination of thermophysical character-istics in ...
  • Badia, A.E. and Duong, T.H. On an inverse source problem ...
  • Bal, G. and Schotland, J.C. Inverse scattering and acousto-optic imag-ing, ...
  • Baraniuk, R. and Steeghs, P. Compressive radar imaging, Radar con-ference, ...
  • Bondarenko, N.P. Finite-difference approximation of the inverse Sturm–Liouville problem with ...
  • Ciofalo, M. Solution of an inverse heat conduction problem with ...
  • Crossen E., Gockenbach M.S., Jadamba, B., Khan, A.A. and Winkler, ...
  • Djennadi, S., Shawagfeh, N., Osman, M.S., Gomez-Aguilar, J.F. and Arqub, ...
  • Gu, Y., Lei, J., Fan, C.M. and He, X.Q. The ...
  • Gu, Y., Wang, L., Chen, W., Zhang, C. and He, ...
  • Hajishafieiha, J. and Abbasbandy, S. Numerical solution of two-dimensional inverse ...
  • Huang, D.Z., Huang, J., Reich, S. and Stuart, A.M. Efficient ...
  • Huntul, M.J. Space-dependent heat source determination problem with nonlocal periodic ...
  • Huntul, M.J. Recovering a source term in the higher-order pseudo-parabolic ...
  • Ikehata, M. An inverse source problem for the heat equation ...
  • Isakov, V. and Wu, S.F. On theory and application of ...
  • Johansson, B.T. and Lesnic, D. A variational method for identifying ...
  • Johansson, T. and Lesnic, D. Determination of a spacewise dependent ...
  • Kilicman, A. and Al Zhour, Z.A.A. Kronecker operational matrices for ...
  • Li, Y. and Hu, X. Artificial neural network approximations of ...
  • Lin, J. and Liu, C.S. Recovering temperature-dependent heat conductiv-ity in ...
  • Lu, Z.R., Pan, T., and Wang, L. A sparse regularization ...
  • Mahmoudi, M., Shojaeizadeh, T. and Darehmiraki, M. Optimal control of ...
  • Mishra, S. and Molinaro, R. Estimates on the generalization error ...
  • Nawaz Khan, M., Ahmad, I. and Ahmad, H. A radial ...
  • Qiu, L., Lin, J., Wang, F., Qin, Q.H. and Liu, ...
  • Rezazadeh, A., Mahmoudi, M. and Darehmiraki, M. A solution for ...
  • Saadatmandi, A. and Dehghan, M. A new operational matrix for ...
  • Shojaeizadeh, T., Mahmoudi, M. and Darehmiraki, M. Optimal control problem ...
  • Wang, W., Han, B. and Yamamoto, M. Inverse heat problem ...
  • Wen, J., Liu, Z.X. and Wang, S.S. Conjugate gradient method ...
  • Widrow, B. and Walach, E. Adaptive inverse control, reissue edition: ...
  • Yang, F. and Fu, C.L. A mollification regularization method for ...
  • Yang, S. and Xiong, X. A Tikhonov regularization method for ...
  • نمایش کامل مراجع