Evaluation of iterative methods for solving nonlinear scalar equations

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-13-26_006

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

This study is aimed at performing a comprehensive numerical evalua-tion of the iterative solution techniques without memory for solving non-linear scalar equations with simple real roots, in order to specify the most efficient and applicable methods for practical purposes. In this regard, the capabilities of the methods for applicable purposes are be evaluated, in which the ability of the methods to solve different types of nonlinear equations is be studied. First, ۲۶ different iterative methods with the best performance are reviewed. These methods are selected based on performing more than ۴۶۰۰۰ analyses on ۱۶۶ different available nonlinear solvers. For the easier application of the techniques, consistent mathematical notation is employed to present reviewed approaches. After presenting the diverse methodologies suggested for solving nonlinear equations, the performances of the reviewed methods are evaluated by solving ۲۸ different nonlinear equations. The utilized test functions, which are selected from the re-viewed research works, are solved by all schemes and by assuming different initial guesses. To select the initial guesses, endpoints of five neighboring intervals with different sizes around the root of test functions are used. Therefore, each problem is solved by ten different starting points. In order to calculate novel computational efficiency indices and rank them accu-rately, the results of the obtained solutions are used. These data include the number of iterations, number of function evaluations, and convergence times. In addition, the successful runs for each process are used to rank the evaluated schemes. Although, in general, the choice of the method de-pends on the problem in practice, but in practical applications, especially in engineering, changing the solution method for different problems is not feasible all the time, and accordingly, the findings of the present study can be used as a guide to specify the fastest and most appropriate solution technique for solving nonlinear problems.

نویسندگان

M. Rezaiee-Pajand

Professor of Civil Engineering, School of Engineering, Ferdowsi University of Mashhad.

A. Arabshahi

Ph.D. Student of Structural Engineering, School of Engineering, Ferdowsi University of Mashhad.

N. Gharaei-Moghaddam

Ph.D. of Structural Engineering, School of Engineering, Ferdowsi University of Mashhad.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Babajee, D. and Dauhoo, M. An analysis of the properties ...
  • Cătinaş, E. How many steps still left to x∗?, SIAM ...
  • Cătinaş, E. A survey on the high convergence orders and ...
  • Cheney, E.W. and Kincaid, D.R. Numerical analysis: mathematics of scientific ...
  • Chun, C. and Neta, B. Comparison of several families of ...
  • Dong, C. A family of multiopoint iterative functions for finding ...
  • Ferngndez-Torres, G. and Vgsquez-Aquino, J. Three new optimal fourth-order iterative ...
  • Gander, W. On Halley’s iteration method, Amer. Math. Monthly, ۹۲(۲) ...
  • Grau, M. and Daaz-Barrero, J.L. An improvement to Ostrowski root-finding ...
  • Gutiérrez, J.M., Magre￿g M.A. and Varona, J.L. The ”Gauss-Seidelization” of ...
  • Hansen, E. and Patrick, M. A family of root finding ...
  • Jarratt, P. Some fourth order multipoint iterative methods for solving ...
  • King, R.F. A family of fourth order methods for nonlinear ...
  • Kou, J., Li, Y. and Wang, X. A composite fourth-order ...
  • Kung, H. and Traub, J.F.Optimal order of one-point and multipoint ...
  • Nedzhibov, G.H. and Petkov, M.G. On a family of iterative ...
  • Neta, B., Chun, C. and Scott, M.Basins of attraction for ...
  • Noor, M.A., Waseem, M., Noor, K.I., Ali, M.A. New iterative ...
  • Noor, M.A., Ahmad, F. and Javeed, S. Two-step iterative methods ...
  • Ortega, J.M. and Rheinboldt, W.C. Iterative solution of nonlinear equa-tions ...
  • Osada, N. An optimal multiple root-finding method of order three, ...
  • Ostrowski, A.M. Solution of Equations and Systems of Equations, Pure ...
  • Potra, F. and Ptak, V. Nondiscrete induction and iterative processes, ...
  • Shah, F.A. and Noor, M.A. Some numerical methods for solving ...
  • Sharma, J.R. and Guha, R.K. A family of modified Ostrowski ...
  • Traub, J. Iterative Methods for the Solution of Equations, Prentice-Hall, ...
  • Varona, J.L. Graphic and numerical comparison between iterative meth-ods, Math. ...
  • Yun, J.H. A note on three-step iterative method for nonlinear ...
  • نمایش کامل مراجع