A numerical solution of parabolic quasi variational inquality non-linear using Newton-Multigrid method

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 89

فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-31_001

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

In this article, we apply three numerical methods to study the uniform convergence of the Newton-Multigrid method for parabolic quasi-variational inequalities with a non-linear right-hand side. To discretize the problem, we utilize a finite element method for the operator and Euler scheme for the time. To obtain the system discretization of the problem, we reformulate the parabolic quasi-variational inequality as a Hamilton-Jacobi-Bellman equation. For linearizing the problem on the coarse grid, we employ Newton's method as an external iteration to obtain the Jacobian system. On the smooth grid, we apply the multi-grid method as an interior iteration of the Jacobian system. Finally, we provide proof of the uniform convergence of the Newton-Multigrid method for parabolic quasi-variational inequalities with a nonlinear right hand, by giving a numerical example of this problem.

کلیدواژه ها:

نویسندگان

Mostafa Bahi

Department of Mathematics, Faculty of exact Sciences, University of EL-OUED, Algeria.

Mohammed Beggas

Department of Mathematics, Faculty of exact Sciences, University of EL-OUED, Algeria.

Nourelhouda Nesba

Department of Mathematics, Faculty of exact Sciences, University of EL-OUED, Algeria.

Imtiaz Ahmad

Department of Mathematics, University of Swabi, Khyber Pakhtunkhwa, Pakistan