Efficient Hybrid algorithm for Gene Selection Based on Chaos Game Optimization
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 45
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS12_167
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
Gene selection stands as a crucial preprocessing step in biomedical data mining and holdssignificance in various biological applications, particularly in biomarker identification. Despite theintroduction of numerous gene selection algorithms, challenges persist, including prolongedconvergence time, parameter tuning, and suboptimal performance. This paper introduces an efficientapproach employing the Chaos Game Optimization (CGO) algorithm for the selection of relevant genesfrom large-scale gene datasets. Our algorithm operates in two distinct phases: during the Relief-basedfiltering phase, weights are assigned to genes, and in the subsequent CGO-based wrapping phase,optimal genes are identified. To assess the efficacy of our proposed method, we conduct evaluationsusing standard gene expression datasets. The experimental results highlight that, in comparison toanalogous methods, our approach produces a more streamlined set of features without compromisingaccuracy.
کلیدواژه ها:
نویسندگان
Pourya Salati
Electrical and Computer Engineering Department, University of Gonabad, Gonabad, Iran
Parastwo Tavakoly
Electrical and Computer Engineering Department, University of Gonabad, Gonabad, Iran
Mohammad Hossein Olyaee
Electrical and Computer Engineering Department, University of Gonabad, Gonabad, Iran