APPLICATION OF DEEP REINFORCEMENT LEARNING INSEMI-ACTIVE CONTROL OF FRAME STRUCTURESEQUIPPED WITH MULTIPLE DAMPER DEVICES

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 207

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SEE09_088

تاریخ نمایه سازی: 10 آبان 1403

چکیده مقاله:

In semi-active control of structures, control algorithms determine the adjustable reaction ofdampers to mitigate the seismic response of the structure. Existing control algorithms typically followa set of predefined rules. Alternatively, data-driven methods can learn from computer simulations toidentify patterns and to make adaptive decisions. Deep reinforcement learning is a subset of machinelearning that utilizes neural networks to perform optimal actions in dynamic environments. In thisstudy, the seismic response of a ۲D, ۹-story frame structure equipped with multiple semi-activemagnetorheological (MR) dampers was controlled using a Twin-Delayed Deep Deterministic PolicyGradient (TD۳) reinforcement learning model that utilized a novel reward system. To assess thesuperiority of the method, the performance of the TD۳ model was compared with that of the skyhookcontrol algorithm.

نویسندگان

Mohammad Parsa Toopchinezhad

B.Sc. Student, Dept. of Computer Eng., Razi Univ., Kermanshah, Iran,

Mostafa Toopchinezhad

M.Sc. Student, Dept. of Civil and Environmental Eng., Carleton Univ., Ottawa, Canada,

Hamid Toopchinezhad

Associate Professor, Dept. of Civil Eng., Razi Univ., Kermanshah, Iran