AN IMAGE-BASED APPROACH FOR AUTOMATEDDAMAGE ASSESSMENT OF REINFORCED CONCRETECOLUMNS

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 80

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SEE09_018

تاریخ نمایه سازی: 10 آبان 1403

چکیده مقاله:

Earthquakes can cause significant damage to structural components, such as columns, which canlead to a risk of collapse and extensive repair costs. Traditional damage assessment methods usuallyrely on visual inspection, which can be time-consuming and subjective. This study proposes anautomated damage assessment method using visual damage features of reinforced concrete columns.The visual damage features (i.e., crack length and crushed area) are extracted from a comprehensivedatabase comprising ۱۰۰ images of damaged concrete columns tested under cyclic quasi-staticloading. Then, a predictive equation for the stiffness-based damage index is derived using the linearregression method. The results show a potent correlation between the damage state of the columns andthe extracted visual damage features, with a meaningful correlation coefficient of ۰.۷۲. The proposedmethod can quickly and accurately assess damage, reducing the need for manual inspections andimproving the safety and efficiency of damage assessment processes.

نویسندگان

Majid Sheikhi

M.Sc. Student, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran,

Amir Hossein Asjodi

Assistant Professor, Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran,

Kiarash M. Dolatshahi

Associate Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran,

Mohammadjavad Hamidia

Assistant Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University,Tehran, Iran,