Event-Triggered Optimal Adaptive Leader-Follower Consensus Control for Unknown Input-Constrained Discrete-Time Nonlinear Systems

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-2_001

تاریخ نمایه سازی: 1 آبان 1403

چکیده مقاله:

This paper introduces an adaptive optimal distributed algorithm based on event-triggered control to solve multi-agent discrete-time zero-sum graphical games for unknown nonlinear constrained-input systems with external disturbances. Based on the value iteration heuristic dynamic programming, the proposed algorithm solves the event-triggered coupled Hamilton-Jacobi-Isaacs equations assuming unknown dynamics to develop distributed optimal controllers and satisfy leader-follower consensus for agents interacting on a communication graph. The algorithm is implemented using the actor-critic neural network, and unknown system dynamics are approximated using the identifier network. Introducing and solving nonlinear zero-sum discrete-time graphical games in the presence of unknown dynamics, control input constraints and external disturbances, differentiate this paper from the previously published works. Also, the control input, external disturbance, and the neural network's weights are updated aperiodic and only at the triggering instants to simplify the computational process. The closed-loop system stability and convergence to the Nash equilibrium are proven. Finally, simulation results are presented to confirm theoretical findings.

نویسندگان

Zahra Jahan

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Abbas Dideban

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Farzaneh Tatari

Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • D. L. Fernandes, A. L. M. Leopoldino, J. de Santiago, ...
  • K. Sun, H. Yu, and X. Xia, “Distributed control of ...
  • M. H. Rezaei and M. B. Menhaj, “Adaptive output stationary ...
  • W. Meng, Q. Yang, J. Sarangapani, and Y. Sun, “Distributed ...
  • C. J. Li and G. P. Liu, “Data‐driven consensus for ...
  • H. Li, Q. Liu, G. Feng, and X. Zhang, “Leader–follower ...
  • J. Kandasamy, R. Ramachandran, V. Veerasamy, and A. X. R. ...
  • F. Tatari, and M. B. Naghibi-Sistani, “Optimal adaptive leader-follower consensus ...
  • J. Long, W. Wang, J. Huang, J. Lu, and K. ...
  • M. Rehan, M. Tufail, and S. Ahmed, “Leaderless consensus control ...
  • X. Liu, J. Sun, L. Dou, and J. Chen, “Leader-following ...
  • Q. Yuan, G. Chen, Y. Tian, Y. Yuan, Q. Zhang, ...
  • T. Basar and G. J. Olsder, “Dynamic noncooperative game theory,” ...
  • K. G. Vamvoudakis, F. L. Lewis, and G. R Hudas, ...
  • Y. Guo, Q. Sun, Y. Wang, and Q. Pan, “Differential ...
  • F. Tatari, M. B. Naghibi-Sistani, and K. G. Vamvoudakis, “Distributed ...
  • F. Tatari, M. B. Naghibi-Sistani, and K. G. Vamvoudakis, “Distributed ...
  • Q. Jiao, H. Modares, S. Xu, F.L. Lewis, and K.G. ...
  • F. Tatari, K.G. Vamvoudakis, and M. Mazouchi, “Optimal distributed learning ...
  • D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game ...
  • W. Wang, X. Chen, and J. Du, “Model-free finite-horizon optimal ...
  • R. Song and L. Zhu, “Stable value iteration for two-player ...
  • M. Abouheaf, F. L. Lewis, K. G. Vamvoudakis, Sofie Haesaert, ...
  • M. I. Abouheaf, F. L. Lewis, M. S. Mahmoud, and ...
  • R. S. Sutton, and A. G. Barto, “Reinforcement Learning: An ...
  • M. Taghian, A. Asadi, and R. Safabakhsh, “A reinforcement learning-based ...
  • B. Kiumarsi, H. Modares, and F. Lewis, “Reinforcement learning for ...
  • H. Jiang, H. Zhang, G. Xiao, and X. Cui, “Data-based ...
  • H. Jiang, H. Zhang, Y. Luo, and X. Cui, “H-infinity ...
  • P. Liu, H. Zhang, C. Liu, and H. Su, “Online ...
  • B. Luo, D. Liu, and H. N. Wu, “Adaptive constrained ...
  • X. i, Y. Tang, and H. R. Karimi, “Consensus of ...
  • control,” Automatica, vol. ۱۱۶, pp. ۱۰۸۸۹۸, ۲۰۲۰ ...
  • Y. Y. Qian, L. Liu, and G. Feng, “Output consensus ...
  • X. Li, Z. Sun, Y. Tang, and H. R. Karimi, ...
  • S. Hu, D. Yue, X. Yin, X. Xie, and Y. ...
  • L. Dong, X. Zhong, C. Sun, and H. He, “Adaptive ...
  • Z. Wang, Q. Wei, D. Liu, and Y. Luo “Event-triggered ...
  • S. Khoo, L. Xie, and Z. Man, “Robust finite-time consensus ...
  • M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws ...
  • نمایش کامل مراجع