Enhancing Image Segmentation with Darwinian Grey Wolf Optimizer: A Novel Multilevel Thresholding Approach
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 67
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-2_004
تاریخ نمایه سازی: 1 آبان 1403
چکیده مقاله:
This paper presents a novel approach to image segmentation through multilevel thresholding, leveraging the speed and precision of the technique. The proposed algorithm, based on the Grey Wolf Optimizer (GWO), integrates Darwinian principles to address the common stagnation issue in metaheuristic algorithms, which often results in local optima and premature convergence. The search agents are efficiently steered across the search space by a dual mechanism of encouragement and punishment employed by our strategy, thereby curtailing computational time. This is implemented by segmenting the population into distinct groups, each tasked with discovering superior solutions. To validate the algorithm’s efficacy, ۹ test images from the Pascal VOC dataset were selected, and the renowned energy curve method was employed for verification. Additionally, Kapur entropy was utilized to gauge the algorithm’s performance. The method was benchmarked against four disparate search algorithms, and its dominance was underscored by achieving the best outcomes in ۲۰ out of ۲۷ cases for image segmentation. The experimental findings collectively affirm that the Darwinian Grey Wolf Optimizer (DGWO) stands as a formidable instrument for multilevel thresholding.
کلیدواژه ها:
نویسندگان
Ehsan Ehsaeyan
Electrical Engineering Department, Sirjan University of Technology, Sirjan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :