Understanding Image Memorability through Localized Stimuli
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 61
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-3-2_001
تاریخ نمایه سازی: 30 مهر 1403
چکیده مقاله:
In today's digital age, we are bombarded with images from the internet, social media, and online magazines. It is fascinating how we can remember so many of these images and their details. However, not every image is equally memorable; some stay with us more than others. Scientists have explored why this is the case. In our research, we are particularly interested in how images that showcase Iranian life and culture stick in the memories of Iranian adults. To investigate this, we created a new collection called the SemMem dataset, which is full of culturally relevant images. We adapted a memory game from earlier studies to test how memorable these images are. To analyze memorability, we used two deep learning architectures, ResNet ۵۰ and ResNet ۱۰۱. These architectures helped us estimate which images are likely to be remembered. Our findings confirmed that images connected to Iranian culture are indeed more memorable to Iranians, highlighting the impact of familiar cultural elements on memory retention.
کلیدواژه ها:
نویسندگان
Amir Shokri
Electrical & Computer Engineering Department, Semnan University, Semnan, Iran.
Farzin Yaghmaee
Faculty of Electrical and Computer Engineering (ECE), Semnan University, Semnan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :