Entropic imprints on bioinformatics
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 82
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_BDCV-4-4_001
تاریخ نمایه سازی: 23 مهر 1403
چکیده مقاله:
The entropic framework is a crucial method in statistical inference that helps scientists create models to describe and predict biological systems, particularly complex networks like gene interactions. Its effectiveness comes from its simple concepts and solid mathematical foundation, making it applicable in various situations. This paper reviews the significant impact of entropy in steering Bioinformatics giant steps ahead through analyzing biological data, such as reconstructing how genes interact and understanding bacterial metabolism and much more. Indeed, the steering hand of entropy in Bioinformatics was arguably in question for many decades until the start of the exploratory era of depicting the phenomenal applicability of entropy in interdisciplinary fields of human knowledge, especially Bioinformatics. Undoubtedly, entropy has a great imprint, which has already changed the way we should think of Bioinformatics based on its multi-faced nature, whether being looked at from an angle of physics, information-theoretic, thermodynamical, chaotic-led approach, and a bird-eye view of a computing perspective. The flow of the current review continues by showcasing the entropic fingerprints on Bioinformatics, resulting in many exceptional discoveries that have enormously added to the existing knowledge. Most importantly, some emerging open problems are provided. Providing these open problems would depict a plethora of issues that need further exploration to build bridges for contemporary Entropic-Bioninformatics Theory. The paper ends with concluding remarks and future research pathways.
کلیدواژه ها:
نویسندگان
Ismail Mageed
Department of Computer Science, Artificial Intelligence and Electronics, Faculty of Engineering and Digital Technologies, University of Bradford, UK.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :