A Robust Optimization Approach for a Discrete Time-Cost-Environment Trade-off Project Scheduling Problem Under Uncertainty
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 41
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-35-2_010
تاریخ نمایه سازی: 14 مهر 1403
چکیده مقاله:
Abstract. One of the important problems in managing construction projects is selecting the best alternative for activities' execution to minimize the project's total cost and time. However, uncertain factors often have negative effects on activity duration and cost. Therefore, it is crucial to develop robust approaches for construction project scheduling to minimize sensitivity to disruptive noise factors. Additionally, existing methods in the literature rarely focus on environmentally conscious construction management. Achieving these goals requires incorporating the project scheduling problem with multiple objectives. This study proposes a robust optimization approach to determine the optimal construction operations in a project scheduling problem, considering time, cost, and environmental impacts (TCE) as objectives. An analytical algorithm based on Benders decomposition is suggested to address the robust problem, taking into account the inherent uncertainty in activity time and cost. To evaluate the performance of the proposed solution approach, a computational study is conducted using real construction project data. The case study is based on the wall of the east coast of Amirabad port in Iran. The results obtained using the suggested solution approach are compared to those of the CPLEX solver, demonstrating the appropriate performance of the proposed approach in optimizing the time, cost, and environment trade-off problem.
کلیدواژه ها:
Time-Cost-Environment Trade off Problem ، Project Scheduling ، Multi-Objective Optimization ، Robust Optimization ، Benders Decomposition.
نویسندگان
Ali Salmasnia
Department of Industrial Engineering, Faculty of Technology, and Engineering, University of Qom, Qom, Iran
Elahe Heydarnezhad
Faculty of Industrial Engineering, Tarbiat Modares university, Tehran, Iran
Hadi Mokhtari
Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :