A Modified Harris Hawks Algorithm to Solving Optimization Problems
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-35-1_007
تاریخ نمایه سازی: 14 مهر 1403
چکیده مقاله:
Harris Hawks Optimization (HHO) algorithm, which is a new metaheuristic algorithm that has shown promising results in comparison to other optimization methods. The surprise pounce is a cooperative behavior and chasing style exhibited by Harris' Hawks in nature. To address the limitations of HHO, specifically its susceptibility to local optima and lack of population diversity, a modified version called Modified Harris Hawks Optimization (MHHO) is proposed for solving global optimization problems. A mutation-selection approach is utilized in the proposed Modified Harris Hawks Optimization (MHHO) algorithm. Through systematic experiments conducted on ۲۳ benchmark functions, the results have demonstrated that the MHHO algorithm offers a more reliable solution compared to other established algorithms. The MHHO algorithm exhibits superior performance to the basic HHO, as evidenced by its superior average values and standard deviations. Additionally, it achieves the smallest average values among other algorithms while also improving the convergence speed. The experiments demonstrate competitive results compared to other meta-heuristic algorithms, which provide evidence that MHHO outperforms others in terms of optimization performance.
کلیدواژه ها:
نویسندگان
Rabie Mosaad Rabie
Department of Operations Research, Faculty of graduate studies for statistical research, Cairo University, Cairo, Egypt.
Hegazy Zaher
Department of Statistics, Faculty of graduate studies for statistical research, Cairo University, Cairo, Egypt.
Naglaa Ragaa Saied
Department of Operations Research, Faculty of graduate studies for statistical research, Cairo University, Cairo, Egypt.
Heba Sayed
Department of Operations Research, Faculty of graduate studies for statistical research, Cairo University, Cairo, Egypt.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :