Direct and inverse problems of ROD equation using finite element method and a correction technique

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-12-4_002

تاریخ نمایه سازی: 8 مهر 1403

چکیده مقاله:

The free vibrations of a rod are governed by a differential equation of the form (a(x)y^\prime)^\prime+\lambda a(x)y(x)=۰, where a(x) is the cross sectional area and \lambda is an eigenvalue parameter. Using the finite element method (FEM) we transform this equation to a generalized matrix eigenvalue problem of the form (K-\Lambda M)u=۰ and, for given a(x), we correct the eigenvalues \Lambda of the matrix pair (K,M) to approximate the eigenvalues of the rod equation. The results show that with step size h the correction technique reduces the error from O(h^۲i^۴) to O(h^۲i^۲) for the i-th eigenvalue. We then solve the inverse spectral problem by imposing numerical algorithms that approximate the unknown coefficient a(x) from the given spectral data. The cross section is obtained by solving a nonlinear system using Newton's method along with a regularization technique. Finally, we give numerical examples to illustrate the efficiency of the proposed algorithms.

نویسندگان

Hanif Mirzaei

Faculty of Basic Sciences, Sahand University of Technology, Tabriz, Iran.

Kazem Ghanbari

Faculty of Basic Sciences, Sahand University of Technology, Tabriz, Iran.

Vahid Abbasnavaz

Faculty of Basic Sciences, Sahand University of Technology, Tabriz, Iran.

Angelo Mingarelli

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K۱S ۵B۶, Canada.