A numerical investigation for the COVID-۱۹ spatiotemporal lockdown-vaccination model
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 53
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-12-4_003
تاریخ نمایه سازی: 8 مهر 1403
چکیده مقاله:
The present article investigates a numerical analysis of COVID-۱۹ (temporal and spatio-tempora) lockdown-vaccination models. The proposed models consist of six nonlinear ordinary differential equations as a temporal model and six nonlinear partial differential equations as a spatio-temporal model. The evaluation of reproduction number is a forecast spread of the COVID-۱۹ pandemic. Sensitivity analysis is used to emphasize the importance of pandemic parameters. We show the stability regions of the disease-free equilibrium point and pandemic equilibrium point. We use effective methods such as central finite difference (CFD) and Runge-Kutta of fifth order (RK-۵). We apply Von-Neumann stability and consistency of the numerical scheme for the spatio-temporal model. We examine and compare the numerical results of the proposed models under various parameters.
کلیدواژه ها:
COVID-۱۹ mathematical model ، Reproduction number ، Sensitivity analysis ، Central finite method ، Runge Kutta of fifth order method ، Von-Neumann stability
نویسندگان
Ahmed Koura
Basic Science Department, Al-Safwa High Institute of Engineering, Egypt.
Kamal Raslsn
Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt.
khalid k. Ali
Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt.
Mohamed Shaalan
Higher Technological Institute, Tenth of Ramadan City, Egypt.