Unconditionally stable finite element method for the variable-order fractional Schrödinger equation with Mittag-Leffler kernel
محل انتشار: مجله مدلسازی ریاضی، دوره: 12، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-3_010
تاریخ نمایه سازی: 6 مهر 1403
چکیده مقاله:
The Schrödinger equation with variable-order fractional operator is a challenging problem to be solved numerically. In this study, an implicit fully discrete continuous Galerkin finite element method is developed to tackle this equation while the fractional operator is expressed with a nonsingular Mittag-Leffler kernel. To begin with, the finite difference scheme known as the L۱ formula is employed to discretize the temporal term. Next, the continuous Galerkin method is used for spatial discretization. This combination ensures accuracy and stability of the numerical approximation. Our next step is to conduct a stability and error analysis of the proposed scheme. Finally, some numerical results are carried out to validate the theoretical analysis.
کلیدواژه ها:
نویسندگان
Gholamreza Karamali
Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Sciences and Technology, South Mehrabad, Tehran, Iran
Hadi Mohammadi-Firouzjaei
Faculty of Basic Sciences, Shahid Sattari Aeronautical University of Sciences and Technology, South Mehrabad, Tehran, Iran