Supervised Fully Constrained Linear Spectral Unmixing using Evolutionary Strategy
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,121
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_724
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
Spectral Unmixing algorithms use two linear and non-linear mixing models to determine the relative abundances of the materials in a remotely sensed image. Hyperspectralimages are often treated as a Linear Mixture Model (LMM), where the image pixels are described by a linear combinationof the spectra of pure materials. In LMM, the abundances are non-negative and sum of them must be one. Linear Unmixing with these two constraints which termed as Fully Constraint Linear Spectral Unmixing (FCLSU) leads to some inequalities that are difficult to carry out. FCLSU can be considered as aconstrained optimization problem and Evolutionary Computation (EC) techniques are good problem solving toolsfor it. In this paper, we use Evolutionary Strategy (ES) to solveFCLSU with the assumption that the pure materials are known. The abundances estimated by ES are converted to a hyperspherical coordinate system to cope with the constraints. The results are compared based on different spectral similarity measures both on simulated and real data
کلیدواژه ها:
نویسندگان
Hossein Fayyazi
Malek-Ashtar University of Technology
Hamid Dehghani
Malek-Ashtar University of Technology
Mojtaba Hosseini
Amirkabir University of Technology