An Effective Method for Classification of Digital Communication Signals
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,236
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_721
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
This paper presents an intelligent method for identification of modulation type in digital communication signals at different signal to noise ratios (SNRs). The method isbased on the idea of optimization of the adaptive neuro-fuzzy inference system (ANFIS) and includes three major modules:the feature extraction module, the classifier module and theoptimization module. In the feature extraction module, a novel combination of the higher order moments (up to eighth), higherorder cumulants (up to eighth) and spectral characteristics are proposed as the efficient features. The adaptive neuro-fuzzyinference system (ANFIS) is investigated as a classifier. In the training phase of ANFIS, the vector of radius has very important roles in terms of recognition accuracy. Therefore, in the optimization module, cuckoo optimization algorithm (COA) is proposed for optimization of the classifier. Experimental results clearly indicate that the proposed hybrid intelligent method has a high classification accuracy to discriminate between different types of digital signals even at very low SNRs.
کلیدواژه ها:
نویسندگان
Milad Azarbad
Department of Electrical Engineering, University of Mazandaran, Iran
Hamed Azami
Department of Electrical Engineering, Iran University of Science and Technology
Saeid Sanei
Faculty of Engineering and Physical Sciences, University of Surrey, UK