Comparative Analysis of Classical Ant Colony Optimization andQuantum-Inspired Ant Colony Optimization

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 84

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CONFIT01_0930

تاریخ نمایه سازی: 4 مهر 1403

چکیده مقاله:

Ant Colony Optimization (ACO) is a bio-inspired computational algorithm designed to solve optimization problems by mimicking the foraging behaviour of ants. With the advent of quantum computing, new paradigms have emerged, leading to the development of quantum -inspired versions of classical algorithms, including ACO. This paper provides a comprehensive comparative analysis of classical Ant Colony Optimization and the recently theorized quantum-inspired version of the algorithm. The discussion encapsulates the foundational principles of each, the distinct mechanisms through which both algorithms explore solution spaces, and the benefits and limitations inherent to their respective computational environments.

نویسندگان

Sepehr Goodarzi

Student of BEng, Computer Engineering Department, Islamic Azad University, Borujerd, Iran

Abolfazl Esfandi

Faculty of Computer Eng, Computer Engineering Department, Islamic Azad University, Borujerd, Iran