Ensemble-based Classifiers for Cancer Classification Using Human Tumor Microarray Data
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,301
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_076
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
In this paper, two cancer classification techniques based on multicategory microarray data sets are presented. Due to the high dimensionality of microarray data sets, choosingreliable feature selection and classification algorithms with a high degree of accuracy and a low complexity is a crucialtask in bioinformatics. Toward this goal, this paper aims to maximize the cancer classification accuracy using two reliable ensemble-based classifiers namely the ensemble of naive bayes and the ensemble of k-nearest neighbor. Simulation results show that our classifiers have considerably better accuracy than someconventional classification techniques such as the Support Vector Machine (SVM) and artificial neural networks in the field ofmulticategory microarray cancer classification based on fourteen cancer data set. However, the run time of the introducedensemble-based classifiers is longer when the schemes use wholefeatures. To reduce the time complexity of our schemes while preserving the same classification accuracy as before, we use the recursive feature elimination based on the multiple support vector machine classifier to select more informative genes before applying the ensemble-based classifiers. Numerical evaluations show at least 30% improvement in the classification accuracy of our schemes when compared to the SVM-one versus one rule
کلیدواژه ها:
نویسندگان
Argin Margoosian
Dept. of Electrical and Computer Engineering, Yazd University, Yazd, Iran