Analyzing Iranian Public Sector Big Data System Requirements Based on System Design Thinking
محل انتشار: مجله تفکر سیستمی در عمل، دوره: 3، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 150
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSTINP-3-3_001
تاریخ نمایه سازی: 3 مهر 1403
چکیده مقاله:
The contemporary world is marked by generation and consumption of vast volume, high velocity, and considerable diverse data, leading us to the concept of big data. In this study, a system design thinking approach was employed to identify the requirements of Iran's public sector big data system. National big data systems would help governments to support their decisions by data and answer to national problems faster. Given the complexity and time-intensive nature of traditional system requirement analysis methods, their practical application in the industry has been declined. Therefore, in this research, system design thinking as an agile alternative for identifying system requirements has been discussed. To accomplish this, the LDA machine learning method has been utilized to analyze approximately ۸۸,۰۰۰ articles, a thematic analysis on around ۶۰۰ Instagram and Twitter posts has been conducted, and six experts representing targeted problem persona were interviewed. The objective of this research is to extract insights to serve as a foundation for formulating big data policies in Iran. Findings reveal that Iran big data system requirements can be classified into four categories which indicate on increasing managed access to data while considering security and privacy, encouraging private and public sectors cooperation, transformation to smart governance, and establishing national data organization which would be responsible of data ID documents.
کلیدواژه ها:
big data ، System Design Thinking ، System Thinking ، policy ، Latent Dirichlet Allocation (LDA) ، Topic Modelling
نویسندگان
Soheil Paydar Fard
Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.
Ali Rajabzadeh Ghatari
Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.
Mahmoud Dehghan Nayeri
Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :