Predicting Auditor Opinion by a new Metaheuristic Algorithm: Water Cycle Algorithm
محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 17، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 132
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-17-4_012
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
An auditor evaluates whether financial statements which the firms issue in public, present a fair view. The audit report is a formal letter containing independent verification of the quality of financial statements used for making economic decisions. Hence, the issuance of such a report offers pertinent details about the firm and enhances confidence degree in the financial statements. This study predicts audit opinion of the firms listed on the Tehran Stock Exchange (TSE) during ۲۰۱۸-۲۰۲۰ using a new metaheuristic algorithm named Water Cycle Algorithm (WCA) and compares its results with one of the most popular methods called logistic regression (LG). ۲۴ variables were extracted from the literature and used for this prediction. Four evaluating criteria were used to compare the predictions of the two methods. According to the findings, the superiority of the criteria in the WCA was confirmed in comparison with LG. Since WCA was more appropriate, users of financial reports can use it to predict audit opinions in interim statements. Auditors can also utilize it for evaluating and accepting clients, thereby achieving an acceptable level of audit risk, as a quality control tool.
کلیدواژه ها:
نویسندگان
Mohammad Moradi
Department of Accounting, Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran, Tehran, Iran
Hoda Eskandar
Department of Accounting, College of Management, University of Tehran, Tehran, Iran
Hassan Yazdifar
Department of Accounting, College of Business, University of Derby, Derby, UK
Aziz Seyedi
Department of Mechanical Engineering, University of Semnan, Semnan, Iran
Hadi Eskandar
Department of Accounting, College of Management, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :