Characterizing Arterial Wall Properties with Plaque and Stent: Elastic, Viscoelastic and Hyper-elastic Models

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 113

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-2_003

تاریخ نمایه سازی: 2 مهر 1403

چکیده مقاله:

Determining the mechanical characteristics of the artery is very essential for the production of vascular implants. In the present work, the mechanical characteristics of arterial walls were investigated by considering plaque and stent in a ۳D model. This article aims to investigate the effect of the arterial tissue with the same boundary conditions and restrictions for an artery blocked with the plaque and stent, in creating stress in the tissue. An intravascular stent implantation is a treatment method whose success largely depends on the mechanical characteristics of each vascular component, plaque and stent, and blood flow pressure. For opening up the blood flow in the blocked artery, stents could be used as medical devices. In this research, a stent was designed, and its impact on all three models of elastic, viscoelastic, and hyper-elastic arterial tissue with plaque was studied and compared. An ideal finite element model was made to find the effect of three types of the artery tissue (elastic, viscoelastic, hyper-elastic) with the systolic and diastolic blood flow pressure to observe the stress and the deformation of arteries, plaques, and stents. In addition, for the hyper-elastic model, two Mooney-Rivlin and Ogden models were also investigated. It was found that the type of artery had an effective impact on the result of the stress and the deformation created in the stented artery. Moreover, the results illustrated that considering different models for the artery tissue affected the plaque and stent behavior. Arteries exhibit interesting mechanical behaviors. In the present study, an attempt was made to investigate different mechanical behaviors of arteries with the plaque and stent obstruction. In the examined models, the stress for the artery and plaque was higher in the Ogden model and the lowest one was in the viscoelastic model, and the deformation was higher in the viscoelastic model and lower in the Ogden model. It should be noted that the average stress for the vessel in the Ogden model was about ۵۰% higher than the viscoelastic model. Pathological changes in the walls of the vessels can lead to high-risk cardiovascular diseases such as heart attacks and strokes. Understanding arterial mechanical behaviors provides valuable insight into disease. Therefore, the investigation of different behavioral models helps to evaluate the behavior of the arterial wall by considering the composition and function of the tissue.

کلیدواژه ها:

نویسندگان

F. Ahadi

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

M. Biglari

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

M. Azadi

Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

M. Bodaghi

Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ghasemiasl R, Ostadhossein R, Javadi M, Hoseinzadeh S. Blood flow ...
  • Singh A, Shrivastav R, Bhatnagar A. A numerical analysis for ...
  • Sazonov YA, Mokhov MA, Gryaznova IV, Voronova VV, Tumanyan KA, ...
  • Sazonov YA, Mokhov MA, Bondarenko AV, Voronova VV, Tumanyan KA, ...
  • Guang Y, Cocciolone AJ, Crandall CL, Johnston BB, Setton LA, ...
  • Huang C, Pan W, Chen H, Copley A. Thixotropic properties ...
  • Cassar A, Holmes Jr DR, Rihal CS, Gersh BJ, editors. ...
  • Canfield J, Totary-Jain H. ۴۰ years of percutaneous coronary intervention: ...
  • Duhan N, Barak S, Mudgil D. Bioactive lipids: Chemistry & ...
  • Darba S, Safaei N, Mahboub–Ahari A, Nosratnejad S, Alizadeh G, ...
  • Schröder J, Brinkhues S. A novel scheme for the approximation ...
  • Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, ...
  • Grogan JA, Leen SB, McHugh PE. Comparing coronary stent material ...
  • Noruzi S, Sadrnezhaad S. Fabrication of spiral stent with superelastic/shape ...
  • Jiang W, Zhao W, Zhou T, Wang L, Qiu T. ...
  • Md STA, Ansari A, Urooj S, Aldobali M. A review ...
  • Ahadi F, Azadi M, Biglari M, Bodaghi M, Khaleghian A. ...
  • Andrianov I, Awrejcewicz J, Diskovsky A. Structural design of patient-specific ...
  • Etave F, Finet G, Boivin M, Boyer J-C, Rioufol G, ...
  • Prithipaul PK, Kokkolaras M, Pasini D. Assessment of structural and ...
  • Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich K-L, ...
  • Fung Y-c. Biomechanics: mechanical properties of living tissues: Springer Science ...
  • Rutten MCM. Fluid-solid interaction in large arteries. ۲۰۰۰ ...
  • Ross R, Glomset JA. The pathogenesis of atherosclerosis. ۱۹۷۶. https://doi.org/۱۰.۱۰۵۶/NEJM۱۹۷۶۰۸۱۲۲۹۵۰۷۰ ...
  • Faloon W. A New, Independent Risk Factor for Heart Disease. ...
  • Zhao S, Gu L, Froemming SR. Effects of arterial strain ...
  • Migliavacca F, Petrini L, Massarotti P, Schievano S, Auricchio F, ...
  • Saleeb A, Dhakal B, Owusu-Danquah J. On the role of ...
  • Azaouzi M, Makradi A, Belouettar S. Deployment of a self-expanding ...
  • Holzapfel GA, Stadler M, Gasser TC. Changes in the mechanical ...
  • Holzapfel GA, Sommer G, Regitnig P. Anisotropic mechanical properties of ...
  • De Bock S, Iannaccone F, De Santis G, De Beule ...
  • Mortier P, Holzapfel GA, De Beule M, Van Loo D, ...
  • Fereidoonnezhad B, Naghdabadi R, Holzapfel GA. Stress softening and permanent ...
  • Fereidoonnezhad B, Naghdabadi R, Sohrabpour S, Holzapfel G. A mechanobiological ...
  • Basar Y, Weichert D, Petrolito J. Nonlinear continuum mechanics of ...
  • Raut BK, Patil VN, Cherian G. Coronary artery dimensions in ...
  • Zhou F-F, Liu Y-h, Ge P-C, Chen Z-H, Ding X-Q, ...
  • Dodge Jr JT, Brown BG, Bolson EL, Dodge HT. Lumen ...
  • Kahraman H, Ozaydin M, Varol E, Aslan SM, Dogan A, ...
  • Goel PK, Vora PL, Sahu AK, Khanna R. Left main ...
  • Waller BF, Orr CM, Slack JD, Pinkerton CA, Van Tassel ...
  • Kumar A, Ajmani ML, Klinkhachorn P. Morphological variation and dimensions ...
  • Sahni D, Jit I. Origin and size of the coronary ...
  • Unnikrishnan M, Menon AC, Deepak M, Joseph J. Analysis of ...
  • Pericevic I, Lally C, Toner D, Kelly DJ. The influence ...
  • Karimi A, Navidbakhsh M, Alizadeh M, Shojaei A. A comparative ...
  • Torres J, Cotelo J, Karl J, Gordon AP. Mechanical property ...
  • Schiavone A, Zhao L. A study of balloon type, system ...
  • Zhao S, Gu L, Froemming SR. Finite element analysis of ...
  • Jahanmardi M, Toudeshky HH, Goodarzi MS. Experimental hyperviscoelastic constitutive model ...
  • نمایش کامل مراجع