Multimodal Biomedical Image Segmentation by Using Multi-Path U-Net
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-1_017
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
Early detection of skin lesions is essential for the success of treatment depending on the earliest possible detection of skin cancer lesions. Segmentation of skin cancer lesions is one of the most important early steps. In this regard, classic U-Net which is based on deep neural networks is the most popular architecture for medical image segmentation. However, the classic U-Net architecture lacks certain aspects. In this approach, we proposed a lightweight model designed to minimize memory usage in the deeper network layers and to reduce training and testing time. We achieved this by leveraging Multi-Level Blocks, which exclusively utilized ۳x۳ convolution operations. Additionally, we have utilized multiple convolutions to facilitate the transfer of information from the encoding to the decoding stage. This approach aims to minimize the semantic gap between the two stages. We have termed this information transfer path the encoder-decoder path. Our method has demonstrated outstanding performance in key metrics when tested on the PH۲ dataset and has shown superior performance in terms of Accuracy and Jaccard Index on the ISIC-۲۰۱۷ dataset compared to the latest methods reported in existing publications. The Multi-Path U-Net method effectively recognizes and precisely segments complex features such as weak boundaries, shape, and color irregularities, and multi-part lesions with diverse color intensities.
کلیدواژه ها:
نویسندگان
H. Farsi
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
S. Noursoleimani
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
S. Mohamadzadeh
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
A. Barati
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :