Sudden Cardiac Death Prediction by Fusing Electrocardiogram and Heart Rate Variability Signals
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 126
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-1_009
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
The prediction of a Sudden Cardiac Death (SCD) long enough before its occurrence is vital for cases outside the hospital. This study investigate the effect of the simultaneous application of Electrocardiogram (ECG) and Heart Rate Variability (HRV) signals in the SCD prediction ۶۰ minutes before its incidence. To do so, first, the SCD prediction was performed in each of the one-minute intervals by different groups of linear and nonlinear ECG and HRV features using the Support Vector Machine (SVM) classifier. The results showed that the best accuracy for SCD prediction was ۹۱.۲۳%. Next, all features were ranked locally in each of the one-minute intervals before the incidence of the death using the Minimum Redundancy and Maximum Relevancy (MRMR) method. Then, the SCD was predicted by applying four top local features from the ECG and HRV signals in each one-minute interval an hour before the death, showing a mean accuracy and sensitivity of ۹۹% and ۹۸.۷۶%, respectively. Finally, by selecting the four most effective features according to the number of times they have been chosen in all one-minute intervals, the mean accuracy and sensitivity of SCD prediction were calculated at ۹۶.۱۵% and ۹۵.۰۷%, respectively. Additionally, since there is a similarity between the ECG signal of the pre-SCD and the Congestive Heart Failure (CHF), the classification of the Normal, CHF, and pre-SCD was performed, indicating a mean accuracy of ۷۹.۷%; it was also discovered that the Normal data could be separated from the SCD and CHF data with higher accuracy.
کلیدواژه ها:
نویسندگان
S. Tavazo
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran
F. Ebrahimi
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :