Sudden Cardiac Death Prediction by Fusing Electrocardiogram and Heart Rate Variability Signals

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 126

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-1_009

تاریخ نمایه سازی: 2 مهر 1403

چکیده مقاله:

The prediction of a Sudden Cardiac Death (SCD) long enough before its occurrence is vital for cases outside the hospital. This study investigate the effect of the simultaneous application of Electrocardiogram (ECG) and Heart Rate Variability (HRV) signals in the SCD prediction ۶۰ minutes before its incidence. To do so, first, the SCD prediction was performed in each of the one-minute intervals by different groups of linear and nonlinear ECG and HRV features using the Support Vector Machine (SVM) classifier. The results showed that the best accuracy for SCD prediction was ۹۱.۲۳%. Next, all features were ranked locally in each of the one-minute intervals before the incidence of the death using the Minimum Redundancy and Maximum Relevancy (MRMR) method. Then, the SCD was predicted by applying four top local features from the ECG and HRV signals in each one-minute interval an hour before the death, showing a mean accuracy and sensitivity of ۹۹% and ۹۸.۷۶%, respectively. Finally, by selecting the four most effective features according to the number of times they have been chosen in all one-minute intervals, the mean accuracy and sensitivity of SCD prediction were calculated at ۹۶.۱۵% and ۹۵.۰۷%, respectively. Additionally, since there is a similarity between the ECG signal of the pre-SCD and the Congestive Heart Failure (CHF), the classification of the Normal, CHF, and pre-SCD was performed, indicating a mean accuracy of ۷۹.۷%; it was also discovered that the Normal data could be separated from the SCD and CHF data with higher accuracy.

نویسندگان

S. Tavazo

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran

F. Ebrahimi

Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Goyal V, Jassal DS, Dhalla NS. Pathophysiology and prevention of ...
  • Chugh SS, Reinier K, Teodorescu C, Evanado A, Kehr E, ...
  • Yow AG, Rajasurya V, Ahmed I, Sharma S. Sudden cardiac ...
  • Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. ۱۹۹۸;۹۸(۲۱):۲۳۳۴-۵۱. https://doi.org/۱۰.۱۱۶۱/۰۱.CIR.۹۸.۲۱.۲۳۳ ...
  • Amezquita-Sanchez JP, Valtierra-Rodriguez M, Adeli H, Perez-Ramirez CA. A novel ...
  • Malik A, Brito D, Vaqar S, Chhabra L. Congestive heart ...
  • Liu T, Si Y, Yang W, Huang J, Yu Y, ...
  • Rich MW. Congestive heart failure in older adults*: epidemiology, pathophysiology, ...
  • Dixit S, Kala R. Early detection of heart diseases using ...
  • Naser MA, Majeed AA, Alsabah M, Al-Shaikhli TR, Kaky KM. ...
  • Ebrahimzadeh E, Pooyan M. Early detection of sudden cardiac death ...
  • Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, ...
  • Acharya UR, Fujita H, Sudarshan VK, Sree VS, Eugene LWJ, ...
  • Murugappan M, Murukesan L, Omar I, Khatun S, Murugappan S. ...
  • Ebrahimzadeh E, Manuchehri MS, Amoozegar S, Araabi BN, Soltanian-Zadeh H. ...
  • Ebrahimzadeh E, Foroutan A, Shams M, Baradaran R, Rajabion L, ...
  • Sheela CJ, Vanitha L, editors. Prediction of sudden cardiac death ...
  • Lai D, Zhang Y, Zhang X, Su Y, Heyat MBB. ...
  • Murugappan M, Murugesan L, Jerritta S, Adeli H. Sudden cardiac ...
  • Piña-Vega R, Valtierra-Rodriguez M, Perez-Ramirez CA, Amezquita-Sanchez JP. Early prediction ...
  • Tiwari R, Kumar R, Malik S, Raj T, Kumar P. ...
  • Suboh M, Jaafar R, Nayan N, Harun N. ECG-based detection ...
  • Raka AG, Naik GR, Chai R. Computational algorithms underlying the ...
  • Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, ...
  • Greenwald SD. The development and analysis of a ventricular fibrillation ...
  • Nolle F, Badura F, Catlett J, Bowser R, Sketch M. ...
  • Baim DS, Colucci WS, Monrad ES, Smith HS, Wright RF, ...
  • Kher R. Signal processing techniques for removing noise from ECG ...
  • Moeyersons J, Amoni M, Van Huffel S, Willems R, Varon ...
  • Electrophysiology TFotESoCtNASoP. Heart rate variability: standards of measurement, physiological interpretation, ...
  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, ...
  • Rosenstein MT, Collins JJ, De Luca CJ. A practical method ...
  • Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos: ...
  • Porta A, Gnecchi-Ruscone T, Tobaldini E, Guzzetti S, Furlan R, ...
  • Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy ...
  • UD Dixit U, Shirdhonkar M. An Improved Fingerprint-based Document Image ...
  • Ebrahimzadeh E, Alavi SM, Bijar A, Pakkhesal A. A novel ...
  • Zare F, Mahmoudi-Nasr P. Feature Engineering Methods in Intrusion Detection ...
  • Radovic M, Ghalwash M, Filipovic N, Obradovic Z. Minimum redundancy ...
  • Peng H, Long F, Ding C. Feature selection based on ...
  • Patil V, Pawar V, Kulkarni S, Mehta T, Khare N. ...
  • Murukesan L, Murugappan M, Iqbal M, Saravanan K. Machine learning ...
  • Tseng L-M, Tseng VS. Predicting ventricular fibrillation through deep learning. ...
  • Srinivasan NT, Schilling RJ. Sudden cardiac death and arrhythmias. Arrhythmia ...
  • Devi R, Tyagi HK, Kumar D. A novel multi-class approach ...
  • Acharya UR, Fujita H, Sudarshan VK, Ghista DN, Lim WJE, ...
  • Khazaei M, Raeisi K, Goshvarpour A, Ahmadzadeh M. Early detection ...
  • Shi M, He H, Geng W, Wu R, Zhan C, ...
  • Eltrass AS, Tayel MB, Ammar AI. Automated ECG multi-class classification ...
  • Hamidi H, Vafaei A, Monadjemi A. A framework for fault ...
  • Hamidi H. A model for impact of organizational project benefits ...
  • نمایش کامل مراجع