A Novel Approach to use Deep Dyna Q Learning for Enhancing Selection and Performace of Encryption and Hashing Techniques in Remote Healthcare Environment
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 89
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-1_007
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
This paper introduces a novel approach that adeptly navigates this trade-off, significantly enhancing the deployment efficiency of remote healthcare systems. The existing methodologies in remote healthcare networks typically face challenges in balancing robust security measures with the need for high-speed data transmission. This model meticulously selects from a pool of encryption methods — AES, RSA, ECC, DSA, Blowfish, TwoFish — and hashing methods — Argon۲, SHA۱, SHA۲۵۶, SHA۵۱۲, MD۵, Bcrypt — to tailor a solution that upholds high security while enhancing speed. The rationale behind employing GCN lies in its ability to efficiently handle the complex, non-linear relationships among different encryption and hashing techniques, while Deep Dyna Q Learning dynamically adjusts hyperparameters to optimize for speed without compromising security.The results were compelling, showcasing an ۸.۵% improvement in energy efficiency, a ۴.۹% increase in speed, an ۸.۳% rise in throughput, a ۵.۹% enhancement in packet delivery ratio, and a ۳.۹% boost in communication consistency compared to existing methods. Notably, this enhanced performance was maintained even under various security threats, including Sybil, masquerading, spoofing, and spying attacks.
کلیدواژه ها:
Remote Healthcare Systems ، Graph Convolutional Networks ، Deep Dyna Q Learning ، Data Encryption Optimization ، Network Security Enhancement
نویسندگان
G. R. Bhagwatrao
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
R. Lakshmanan
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :