Time Series Prediction Using Emotional Neural Networks

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MSEEE-2-4_002

تاریخ نمایه سازی: 2 مهر 1403

چکیده مقاله:

Time series forecasting is important in many fields including energy management, power market, and engineering. Therefore, it is vital to introduce new algorithms that can predict time series with high accuracy. Emotional networks have recently been introduced based on emotional processes occurring in the mammalian brain. They have shown desirable numerical properties such as fast response, simple structure, learning capability, and the ability to accurately approximate and address time and complexity issues. However, their use in time-series prediction is at the primary stages. Therefore, we are inspired to use emotional models in the time-series prediction problems. Specifically, we propose to use a continuous radial basis emotional neural network (CRBENN) for time-series prediction. The normal rules of the emotional brain are used to update the network weights and the gradient descent algorithm is used to update the radial basis parameters. The proposed method is compared with two neuro and fuzzy methods in three benchmark problems. The results show the lower prediction error of the proposed method.

نویسندگان

Mohammad Rezaei

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Fahimeh Baghbani

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Abbas Dideban

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Ragulskis and K. Lukoseviciute, ‘Non-uniform attractor embedding for time ...
  • J. Hu, X. Wang, Y. Zhang, D. Zhang, M. Zhang, ...
  • C. Balkenius and J. MorEn, ‘Emotional Learning: A Computational model ...
  • F. Baghbani, M.-R. Akbarzadeh-T, M.-B. Naghibi-Sistani, and A. Akbarzadeh, ‘Emotional ...
  • S. M. Tahamipour-Z., M. R. Akbarzadeh-T., and F. Baghbani, ‘Interval ...
  • C. J. Lin, S. Y. Jeng, H. Y. Lin, and ...
  • H. Rafiei, A. Salehi, F. Baghbani, P. Parsa, and M. ...
  • M. Gollapalli et al., ‘A Neuro-Fuzzy Approach to Road Traffic ...
  • E. I. Papageorgiou and K. Poczęta, ‘A two-stage model for ...
  • R. H. Abiyev, ‘Fuzzy wavelet neural network based on fuzzy ...
  • W. Cheng et al., ‘High-efficiency chaotic time series prediction based ...
  • T. Liu, S. Chen, S. Liang, S. Gan, and C. ...
  • H. Gholizade-Narm and M. R. Shafiee Chafi, ‘Using repetitive fuzzy ...
  • G. Heydari, M. Vali, and A. A. Gharaveisi, ‘Chaotic time ...
  • D. Li, M. Han, and J. Wang, ‘Chaotic time series ...
  • Z. Shi and M. Han, ‘Support vector echo-state machine for ...
  • X. Yao and Z. Wang, ‘Fractional Order Echo State Network ...
  • H. Zhou, Y. Zhang, W. Duan, and H. Zhao, ‘Nonlinear ...
  • J. E. LeDoux, V. B. Mountcastle, and F. Plum, ‘Handbook ...
  • R. Webb, ‘The Emotional’, in Agency, ۲۰۱۵, pp. ۱۰۳–۱۰۹ ...
  • J. Morén and C. Balkenius, ‘A computational model of emotional ...
  • J. Moren, ‘Emotion and Learning- A computational model of the ...
  • M. Parsapoor, ‘An introduction to brain emotional learning inspired models ...
  • T. Babaie, R. Karimizandi, and C. Lucas, ‘Learning based brain ...
  • A. R. Mehrabian, C. Lucas, and J. Roshanian, ‘Aerospace launch ...
  • C. Lucas, D. Shahmirzadi, and N. Sheikholeslami, ‘Introducing belbic: Brain ...
  • H. Rouhani, M. Jalili, B. N. Araabi, W. Eppler, and ...
  • E. Lotfi, O. Khazaei, and F. Khazaei, ‘Competitive Brain Emotional ...
  • O. K. Oyedotun and A. Khashman, ‘Prototype-incorporated emotional neural network’, ...
  • S. I. Abba et al., ‘Integrating feature extraction approaches with ...
  • E. Lotfi and M. R. Akbarzadeh-T., ‘Practical emotional neural networks’, ...
  • Y. Chu, S. Fu, S. Hou, and J. Fei, ‘Intelligent ...
  • E. Lotfi and M. R. Akbarzadeh-T., ‘A winner-take-all approach to ...
  • M. Parsapoor and U. Bilstrup, ‘Chaotic time series prediction using ...
  • H. Zhang, C. Yang, and J. Qiao, ‘Emotional Neural Network ...
  • F. Baghbani, M. R. Akbarzadeh-T, and M. B. N. Sistani, ...
  • H. S. A. Milad and J. Gu, ‘Expanded Neo-Fuzzy Adaptive ...
  • E. Lotfi and M. R. Akbarzadeh-T, ‘Brain emotional learning-based pattern ...
  • نمایش کامل مراجع