Risk Based Energy Management of Renewable Based Smart EV Parking Lot
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 94
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-2-4_004
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
Electric Vehicles (EVs) have penetrated the modern distribution system in the last decade. On the other hand, Renewable Energies (RE) play a serious task in such Micro-Grids (MG). A typical MG consists of several Distributed Energy Resources (DER) including Distributed Generations (DGs) and Demand Response (DR) as well as EV charge/discharge stations. In this paper, optimal charging and discharging strategies based on DR programs are applied to Electric Vehicle charging stations equipped with renewable energies. To avoid profit loss due to renewable uncertainties, Peer-to-peer (P۲P) energy bartering between EV charging stations as prosumers are suggested in this paper. Hence the management system for the charge and discharge of EVs and station batteries, as well as the Energy Management System (EMS) are developed in this paper. To this end firstly developed EMS applied to the individual station. Secondly, the P۲P power transaction was added to the model in order to smoothen volatile uncertain load and renewables. The proposed model is a Mixed-Integer Linear Programming (MILP) and has been solved by GAMS/CPLEX. Numerical studies have shown that aggregator deployment is more beneficiary for Virtual Power Plant (VPP).
کلیدواژه ها:
نویسندگان
Mahsa Salari
Department of Electrical Engineering Kerman Branch, Islamic Azad University, Kerman, Iran.
Mehdi Jafari Shahbazzadeh
Department of Electrical Engineering Kerman Branch, Islamic Azad University, Kerman, Iran.
Mahdiyeh Eslami
Department of Electrical Engineering Kerman Branch, Islamic Azad University, Kerman, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :