A Novel Space Reduction Technique for Design Optimization of Permanent Magnet Synchronous Motors
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 128
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-2-1_001
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
Due to the non-linearity and large dimensions of permanent magnet motor optimization, the use of metaheuristic methods such as GA, PSO, etc. would not be the most appropriate method especially if the fitness assessment is done by a time-consuming solver such as finite element analysis (FEA). The FEA, which is widely used by most researchers, requires a lot of time and space and leads to huge computational costs. On the other hand, the accuracy of approximate analytical models is not sufficient for high-dimensional optimization tasks. To overcome these problems, a new space reduction optimization method is developed and presented in this paper. The proposed method gradually shrinks the search space and approaches an interesting subspace so that the wide variable space becomes smaller. As a result, FEA modeling accuracy is achieved as well as computational cost reductions. To validate the method, the design optimization is performed on a ۲۰۰۴ Toyota Prius Interior Permanent Magnet (IPM) motor. The results are compared with other optimization algorithms in terms of accuracy and number of performance evaluations. The comparison results show the superiority of the proposed algorithm, which can be a desirable alternative to industrial optimization tasks that necessarily require the least number of function evaluations.
کلیدواژه ها:
Design Optimization ، Space Reduction Technique ، Problem Dependent Optimization (PDO) ، Finite Element Analysis (FEA) ، Interior Permanent Magnet (IPM)
نویسندگان
Reza Ilka
Researcher
Yousef Alinejad-Beromi
Faculty of Electrical and Computer Engineering (ECE), Semnan University,Semnan,Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :