Elevating Accuracy: Enhanced Feature Selection Methods for Type ۲ Diabetes Prediction

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 65

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-7-2_004

تاریخ نمایه سازی: 1 مهر 1403

چکیده مقاله:

Diabetes, a metabolic disorder, poses significant annual risks due to various factors, requiring effective management strategies to prevent life-threatening complications. Classified into Type ۱, Type ۲, and Gestational diabetes, its impact spans diverse demographics, with Type ۲ diabetes being particularly concerning due to cellular insulin deficiencies. Early prediction is crucial for intervention and complication prevention. While machine learning and artificial intelligence show promise in predictive modeling for diabetes, challenges in interpreting models hinder widespread adoption among physicians and patients. The complexity of these models often raises doubts about their reliability and practical utility in clinical settings. Addressing interpretability challenges is crucial to fully harnessing predictive analytics in diabetes management, leading to improved patient outcomes and reduced healthcare burdens. Previous research has utilized various algorithms like Naïve Bayes, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and decision trees for patient classification. In this study using the Pima dataset, we applied a preprocessing technique that utilized the most important features identified by the Random Forest algorithm and we used an ensemble method combining the SVM algorithm and Naïve Bayes for the model. In the first section of the proposed method, we provided explanations regarding the dataset. In the second section, we elucidated all preprocessing steps applied to this dataset, and in the third section, we evaluated the model using the selected algorithm under investigation. The proposed model, after going through the various stages, was able to report an accuracy of ۸۱.۸۲%, a precision of ۸۲.۳۴%, an AUC of ۸۸.۱۹% and a Recall of ۷۰.۶۸%. Considering the review of similar studies, an improvement of ۳.۹۹% in accuracy demonstrates a significant advancement that highlights the benefits of traditional methods in disease prediction. These findings suggest the potential use of web-based applications to encourage both physicians and patients in diabetes prediction efforts.

نویسندگان

Ghazaleh Kakavand Teimoory

Data Mining Laboratory, Department of Computer Engineering Faculty of Engineering, Alzahra University Tehran, Iran

MohammadReza Keyvanpour

Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shaheen, N. Javaid, N. Alrajeh, Y. Asim, and S. Aslam, ...
  • El-Sofany, S. A. El-Seoud, O. H. Karam, Y. M. Abd ...
  • “Classification and diagnosis of diabetes: Standards of Medical Care in ...
  • E. Oghenekome Paul, “Hybrid decision tree-based machine learning models for ...
  • Z. Zhang et al., “A novel evolutionary ensemble prediction model ...
  • E. Adua et al., “Predictive model and feature importance for ...
  • F. Serpush, M. R. Keyvanpour, and M. B. Menhaj, “Remote ...
  • H. Qi, X. Song, S. Liu, Y. Zhang, and K. ...
  • S. Mehrmolaei, M. Savargiv, and M. R. Keyvanpour, “Hybrid learning-oriented ...
  • M. R. Keyvanpour, B. Pourebrahim, and S. Mehrmolaei, “EADR: an ...
  • V. Chang, J. Bailey, Q. A. Xu, and Z. Sun, ...
  • M. Badawy, N. Ramadan, and H. A. Hefny, “Healthcare predictive ...
  • K. R. Tan et al., “Evaluation of Machine Learning Methods ...
  • Z. Zrubka et al., “The Reporting Quality of Machine Learning ...
  • R. Roshankar and M. R. Keyvanpour, “Spatio-Temporal Graph Neural Networks ...
  • S. Gündoğdu, “Efficient prediction of early-stage diabetes using XGBoost classifier ...
  • J. Hu and S. Szymczak, “A review on longitudinal data ...
  • H. Blockeel, L. Devos, B. Frénay, G. Nanfack, and S. ...
  • X. Yuan, S. Liu, W. Feng, and G. Dauphin, “Feature ...
  • K. Oliullah, M. H. Rasel, M. M. Islam, M. R. ...
  • Z. Zhang et al., “A novel evolutionary ensemble prediction model ...
  • H. B. Kibria, M. Nahiduzzaman, M. O. F. Goni, M. ...
  • M. O. Edeh et al., “A Classification Algorithm-Based Hybrid Diabetes ...
  • A. A. Jasim, L. R. Hazim, H. Mohammedqasim, R. Mohammedqasem, ...
  • M. S. Reza, U. Hafsha, R. Amin, R. Yasmin, and ...
  • S. P. Chatrati et al., “Smart home health monitoring system ...
  • M. Kawarkhe and P. Kaur, “Prediction of Diabetes Using Diverse ...
  • J. Abdollahi and S. Aref, “Early Prediction of Diabetes Using ...
  • I. Tasin, T. U. Nabil, S. Islam, and R. Khan, ...
  • A. Perdana, A. Hermawan, and D. Avianto, “Analyze Important Features ...
  • K. Alnowaiser, “Improving Healthcare Prediction of Diabetic Patients Using KNN ...
  • M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. ...
  • N. N. N. Nazirun et al., “Prediction Models for Type ...
  • N. Katiyar, H. K. Thakur, and A. Ghatak, “Recent advancements ...
  • G. Dharmarathne, T. N. Jayasinghe, M. Bogahawaththa, D. P. P. ...
  • M. Ramanna Lamani and T. A. Gondhale, “Enhancing Diabetes Prediction ...
  • نمایش کامل مراجع