Effect of recorded data in Flood Management

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,943

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IFMC01_029

تاریخ نمایه سازی: 23 مرداد 1392

چکیده مقاله:

More accurate forecasting of monthly rainfall is significantly important in flood forecasting for control of it, flood occurrence alarm, water resources management, and construction of shelter. In this paper, ability of time series models in forecasting the rainfall according to the climate conditions was estimated. For this purpose, rainfall data of four different climates in Iran was selected. Using this data amounts of rainfall were forecasted by time series models for one next year. In first method number of observation data for model calibration were 60, and then this increase to the 120 and 588 data. Time series models have found a widespread application in many practical sciences. In addition, rainfall forecasting has been done by some methods such as time series models, satellite imagery, and artificial neural networks. However, according to the deficit data in most rainfall forecasting, number of required observation data always been questioned. Therefore, this paper attempts to present number of required observation data according to the climate conditions. By comparing R2 of the models, it was determined that time series models are better appropriate to rainfall forecasting in semi-arid climate. Numbers of required observation data for forecasting of one next year were 60 rainfall data in semi-arid climate

کلیدواژه ها:

Flood management ، Length of recorded data ، Rainfall forecasting

نویسندگان

Mohammad Valipour

Irrigation and Drainage Engineering College, College of Abureihan, University of Tehran, Pakdasht

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :