Analytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 46

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHMTR-6-2_008

تاریخ نمایه سازی: 24 شهریور 1403

چکیده مقاله:

Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral inflow in accordance to the channel. A logarithmic transformation in the space variable has been applied in order to derive a general solution of the transport equation for spatially variable initial pollutant distribution and upstream time-dependent pollutant concentration. The logarithmic transformation reduces both conservative and non-conservative forms of transport-dispersion equation to a form with constant coefficients that is solvable by analytical methods. An analysis of these solutions indicates that only the solution of a conservative form of the governing equation yields appropriate results that are conceptually acceptable in a real physical situation. The solution lends to analyze the damping effect of such transport on the pollutant with an initial Gaussian profile, in contrast with that of the initial quasi-Gaussian profile available in the literature. It is noteworthy to mention that the solution of conservative form of the transport equation implies that mass of the non-conservative pollutant in the channel decreases with an increase in time, and finally reaches to a constant value that is a ratio of product of the transport velocity coefficient and upstream concentration to the coefficient of decay of the pollutant.

نویسندگان

Vidya Prasad Shukla

Professor, Department of Mathematics

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Th. van Genucheten and W. J. Alves, “Analytical solution ...
  • C. V. Chrysikopoulos and Y. Sim, “Onedimensional Virus Transport Homogeneous ...
  • M. K. Singh, V. P.Singh, P. Singh and D. Shukla, ...
  • M. K. Singh, S. Ahamad, and V. P. Singh, “Analytical ...
  • A. Kumar, D. K. Jaiswal and N. Kumar, “Analytical solution ...
  • M. Th. van Genuchten, F. J. Leij, T. H. Skaggs, ...
  • H.A. Basha, and F.S. El-Habel, "Analytical Solution of the One-dimensional ...
  • J.R. Philip, "Some exact solutions of convection-diffusion and diffusion equations," ...
  • C. Zoppou and J. H. Knight, "Comment on ‘A space ...
  • C. Zoppou and J.H. Knight, "Analytical solutions for advection and ...
  • J.S. Pérez Guerrero, T. H. Skaggs, “Analytical solution for one-dimensional ...
  • V. P. Shukla, “Analytical Solutions for Unsteady Transport Dispersion of ...
  • G. de Marsily, Quantitative Hydrogeology: Groundwater Hydrology for engineers. Academic ...
  • نمایش کامل مراجع